Einstein Summation Convention Question 2

Click For Summary
SUMMARY

The discussion centers on the application of the Einstein summation convention and the properties of the Kronecker delta and Levi-Civita symbol in tensor calculations. The user explores the expression $$\epsilon_{ij \ell} \, \epsilon_{km \ell} \, \epsilon_{ijm} \, a_k$$ and seeks clarification on the legality of eliminating indices using Kronecker deltas. The conclusion reached is that the expression evaluates to zero due to the antisymmetry of the Levi-Civita symbol when indices are equal, confirming that $$A_{ij} B_{ij} = 0$$ for any symmetric matrix A and antisymmetric matrix B.

PREREQUISITES
  • Understanding of the Einstein summation convention
  • Familiarity with Kronecker delta and its properties
  • Knowledge of Levi-Civita symbol and its antisymmetry
  • Basic concepts of matrix algebra, including symmetric and antisymmetric matrices
NEXT STEPS
  • Study the properties of the Levi-Civita symbol in detail
  • Learn how to manipulate Kronecker deltas in tensor equations
  • Explore examples of symmetric and antisymmetric matrices in tensor calculus
  • Practice solving tensor equations using the Einstein summation convention
USEFUL FOR

Students and professionals in physics and engineering, particularly those working with tensor calculus, linear algebra, and applications of the Einstein summation convention in theoretical frameworks.

Athenian
Messages
143
Reaction score
33
Homework Statement
Solve for ##\epsilon_{ij \ell} \, \epsilon_{km \ell} \, \epsilon_{ijm} \, a_k##
Relevant Equations
Refer Below ##\longrightarrow##
Below is my attempted solution:

$$\epsilon_{ij \ell} \, \epsilon_{km \ell} \, \epsilon_{ijm} \, a_k$$
$$\Rightarrow (\delta_{ik} \, \delta_{jm} - \delta_{im} \, \delta_{jk}) \epsilon_{ijm} \, a_k$$
$$\Rightarrow \delta_{ik} \, \delta_{jm} \, \epsilon_{ijm} \, a_k - \delta_{im} \, \delta_{jk} \epsilon_{ijm} \, a_k$$
$$\Rightarrow a_i \, \delta_{jm} \, \epsilon_{ijm} - a_j \delta_{im} \, \epsilon_{ijm}$$

From here on out, I am not sure what I am doing. Therefore, any guidance or assistance would be greatly appreciated.

$$\Rightarrow a_m \epsilon_{ijm} - a_m \epsilon_{ijm} = 0$$

Perhaps, my biggest question is would eliminating the Kronecker delta and getting ##a_m## be mathematically legal?

Also, I have heard from someone else that the above equation results to zero because of anti-symmetry. How is one able to determine that?

Thank you for the help!
 
Physics news on Phys.org
Athenian said:
Also, I have heard from someone else that the above equation results to zero because of anti-symmetry. How is one able to determine that?

If ##A## and ##B## are general, is it always true that

$$A_{ij} B_{ij} = A_{ji} B_{ji}?$$

If so, why? If not, why not?
 
Unfortunately, I am not quite sure what you mean by "general" as I have only seen the Kronecker delta possessing two subscripts thus far in my studies. However, if I am to apply the above equation using "Kronecker delta" logic, I would say yes as they will both ultimately equate to 0.

I apologize if this doesn't properly answer your question. Nonetheless, I really appreciate the helping hand.
 
Athenian said:
Unfortunately, I am not quite sure what you mean by "general" as I have only seen the Kronecker delta possessing two subscripts thus far in my studies.

Think of ##A## and ##B## as being matrices (##3\times3##, if you like). The Kronecker delta is the component version of the identity matrix. By "general", I mean that ##A## and ##B## do not possesses any special symmetry or antisymmetry properties. I am trying to illustrate and import aspect of the Einstein summation convention.
 
George Jones said:
If ##A## and ##B## are general, is it always true that

$$A_{ij} B_{ij} = A_{ji} B_{ji}?$$

If so, why? If not, why not?
Hmmm, despite thinking for a bit to find a better answer, I still only came up with an assumption of "no" since matrix multiplication is not communicable.

While I did try to prove my guess by writing something along the lines of ##A_{ij} \, B_{ik} \, \delta_{jk} = A_{ij} \, B_{ij}##, I didn't think that was going very well in the end ...
 
Athenian said:
Hmmm, despite thinking for a bit to find a better answer, I still only came up with an assumption of "no" since matrix multiplication is not communicable.

While I did try to prove my guess by writing something along the lines of ##A_{ij} \, B_{ik} \, \delta_{jk} = A_{ij} \, B_{ij}##, I didn't think that was going very well in the end ...
Try to write the sum explicitly for ##i,j=1,2,3##.
 
Wrote the sum explicitly down and that definitely helped me better visualize what's going on.

Anyway, I take back my answer. They are equal to each other. In short, ##A_{ij}## and ##A_{ji}## are the same because one is simply moving the ##\Sigma## (i.e. sum) for ##i## and ##y## back and forth (or in different orders). However, in the end, though, the resulting sum would be the same.

Would this logic, I can thus say that the below equation is correct:
George Jones said:
##A_{ij} B_{ij} =A_{ji} B_{ji}##
 
  • Like
Likes   Reactions: PeroK
Athenian said:
Wrote the sum explicitly down and that definitely helped me better visualize what's going on.

Anyway, I take back my answer. They are equal to each other. In short, ##A_{ij}## and ##A_{ji}## are the same because one is simply moving the ##\Sigma## (i.e. sum) for ##i## and ##y## back and forth (or in different orders). However, in the end, though, the resulting sum would be the same.

Would this logic, I can thus say that the below equation is correct:

Now suppose that ##A## is symmetric and that ##B## is antisymmetic.
 
I see. Then, using my logic from earlier, ##B_{ij}## would be symmetric while ##-B_{ji}## would be antisymmetric.

Therefore, ##A_{ij} \, B_{ij} = - A_{ij} \, B_{ji}##, right?

Provided that I am correct, I still don't exactly see how this solution method helps me solve my above equation. Are there dots I am supposed to be connecting here?

Thank you for your help!
 
  • #10
Athenian said:
I see. Then, using my logic from earlier, ##B_{ij}## would be symmetric while ##-B_{ji}## would be antisymmetric.

I am not sure what what you mean, here. ##A## symmetric means ##A_{ij} = A_{ji}## always, i.e,, both inside and outside sums. The Kronecker delta is symmetric. ##B## antisymmetric means ##B_{ij} = -B_{ji}## always, i.e,, both inside and outside sums. The Levi-Civita symbol is antisymmetric with respect to any pair of indices.

Where we stand: for any ##A## and ##B##, ##A_{ij} B_{ij} = A_{ji} B_{ji}##, because of the implied sums.

Now suppose that ##A## is symmetric and that ##B## is antisymmetic. Using the properties I give above, rewrite ##A_{ij} B_{ij}##.
 
  • Like
Likes   Reactions: Athenian
  • #11
Athenian said:
Homework Statement:: Solve for ##\epsilon_{ij \ell} \, \epsilon_{km \ell} \, \epsilon_{ijm} \, a_k##
Relevant Equations:: Refer Below ##\longrightarrow##

Below is my attempted solution:

$$\epsilon_{ij \ell} \, \epsilon_{km \ell} \, \epsilon_{ijm} \, a_k$$
$$\Rightarrow (\delta_{ik} \, \delta_{jm} - \delta_{im} \, \delta_{jk}) \epsilon_{ijm} \, a_k$$
$$\Rightarrow \delta_{ik} \, \delta_{jm} \, \epsilon_{ijm} \, a_k - \delta_{im} \, \delta_{jk} \epsilon_{ijm} \, a_k$$
$$\Rightarrow a_i \, \delta_{jm} \, \epsilon_{ijm} - a_j \delta_{im} \, \epsilon_{ijm}$$
As I said in another thread, when you see a Kronecker delta, use it to eliminate one of the indices that appears in it. For example here what do you get if you do the sum over m in both terms?
 
  • Like
Likes   Reactions: Athenian
  • #12
George Jones said:
I am not sure what you mean, here. ##A## symmetric means ##A_{ij} = A_{ji}## always, i.e,, both inside and outside sums. The Kronecker delta is symmetric. ##B## antisymmetric means ##B_{ij} = -B_{ji}## always, i.e,, both inside and outside sums. The Levi-Civita symbol is antisymmetric with respect to any pair of indices.

Where we stand: for any ##A## and ##B##, ##A_{ij} B_{ij} = A_{ji} B_{ji}##, because of the implied sums.

Now suppose that ##A## is symmetric and that ##B## is antisymmetic. Using the properties I give above, rewrite ##A_{ij} B_{ij}##.

My mistake here. In that case, to answer the question ##\Longrightarrow A_{ij} B_{ij} = -A_{ji} B_{ji}## assuming that ##A_{ij}## is symmetric and ##B_{ij}## is anti-symmetric.
 
  • #13
nrqed said:
As I said in another thread, when you see a Kronecker delta, use it to eliminate one of the indices that appears in it. For example here what do you get if you do the sum over m in both terms?

Thanks a lot for the help. I figured out the logic behind solving the question. Essentially, if I assume ##j \neq m##, then both Kronecker deltas will go to zero - making the entire solution ##0##. However, if I make ## j = m##, then both Kronecker deltas will go to one. However, the Levi-Civita will then become ##\epsilon_{ijj}## or ##\epsilon_{imm}##. And, in this case, the Levi-Civita would also go to zero. Therefore, regardless whether ##j = m## or ##j \neq m##, the entire solution will go to ##0##.

Is this reasoning accurate?
 
  • Like
Likes   Reactions: nrqed
  • #14
Athenian said:
Thanks a lot for the help. I figured out the logic behind solving the question. Essentially, if I assume ##j \neq m##, then both Kronecker deltas will go to zero - making the entire solution ##0##. However, if I make ## j = m##, then both Kronecker deltas will go to one. However, the Levi-Civita will then become ##\epsilon_{ijj}## or ##\epsilon_{imm}##. And, in this case, the Levi-Civita would also go to zero. Therefore, regardless whether ##j = m## or ##j \neq m##, the entire solution will go to ##0##.

Is this reasoning accurate?
That's completely correct.

In general, when you have a Kronecker delta, it is very nice because you can do the sum over one of its indices trivially, so you should always do that and get rid of all the Kronecker deltas this way. In this problem, if you had not realized the point you just made, you would have ended up with Levi-Civita symbols with two indices equal, which would have told you the result is zero.
 
  • Like
Likes   Reactions: Athenian
  • #15
Thank you for confirming my explanation. It really helped and I sincerely appreciate it!
 
  • #16
As @nrqed has explianed, it is very important to know how to eliminate sum using the Konecker delta. It also can be useful to know how to use symmetry properties.

Athenian said:
I can thus say that the below equation is correct:

George Jones said:
$$A_{ij} B_{ij} = A_{ji} B_{ji}$$
Athenian said:
##A_{ij} B_{ij} = -A_{ji} B_{ji}## assuming that ##A_{ij}## is symmetric and ##B_{ij}## is anti-symmetric.

Putting these two things together gives
$$\begin{align}
A_{ij} B_{ij} &= -A_{ij} B_{ij} \nonumber \\
2A_{ij} B_{ij} &= 0 \nonumber \\
A_{ij} B_{ij} &= 0 \nonumber
\end{align}$$

for any symmetric ##A## and antisymmetric ##B## (or vice versa). In particular, it can be used in both terms of ##a_i \, \delta_{jm} \, \epsilon_{ijm} - a_j \delta_{im} \, \epsilon_{ijm}##.

The first term contains ##\delta_{jm} \, \epsilon_{ijm}##, with ##\delta_{jm}## symmetric in ##j## and ##m##, and ##\epsilon_{ijm}## antisymmetric in ##j## and ##m##, so ##\delta_{jm} \, \epsilon_{ijm} = 0##.

The second term contains ##\delta_{im} \, \epsilon_{ijm}##, with ##\delta_{im}## symmetric in ##i## and ##m##, and ##\epsilon_{ijm}## antisymmetric in ##i## and ##m##, so ##\delta_{im} \, \epsilon_{ijm} = 0##.
 
  • Like
Likes   Reactions: Athenian and nrqed
  • #17
George Jones said:
As @nrqed has explianed, it is very important to know how to eliminate sum using the Konecker delta. It also can be useful to know how to use symmetry properties.Putting these two things together gives
$$\begin{align}
A_{ij} B_{ij} &= -A_{ij} B_{ij} \nonumber \\
2A_{ij} B_{ij} &= 0 \nonumber \\
A_{ij} B_{ij} &= 0 \nonumber
\end{align}$$

for any symmetric ##A## and antisymmetric ##B## (or vice versa). In particular, it can be used in both terms of ##a_i \, \delta_{jm} \, \epsilon_{ijm} - a_j \delta_{im} \, \epsilon_{ijm}##.

The first term contains ##\delta_{jm} \, \epsilon_{ijm}##, with ##\delta_{jm}## symmetric in ##j## and ##m##, and ##\epsilon_{ijm}## antisymmetric in ##j## and ##m##, so ##\delta_{jm} \, \epsilon_{ijm} = 0##.

The second term contains ##\delta_{im} \, \epsilon_{ijm}##, with ##\delta_{im}## symmetric in ##i## and ##m##, and ##\epsilon_{ijm}## antisymmetric in ##i## and ##m##, so ##\delta_{im} \, \epsilon_{ijm} = 0##.

To the OP: make sure you understand George's example with an the product of arbitrary symmetric ##A## and antisymmetric ##B##, it can be very useful.
 
  • Like
Likes   Reactions: Athenian
  • #18
Wow, thank you so much for the explanation, @George Jones! This was incredibly insightful and I have managed to connect all the conceptual dots to understanding the symmetry properties.

I really appreciate the help and I'll be sure to practice more similar problems.
 
  • Like
Likes   Reactions: berkeman

Similar threads

Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
14K
  • · Replies 6 ·
Replies
6
Views
8K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
7K
  • · Replies 6 ·
Replies
6
Views
12K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K