A Einstein's Elevator Trajectories: Desloge & Philpott 1987, Hamilton 1978

Mathieu Rouaud
Messages
2
Reaction score
1
TL;DR Summary
Newton's theory predicts parabolic trajectories. But what kind of trajectories within the framework of Special Relativity?
Hello,
Some papers describe the vertical motion of a ray of light or a non-zero mass particle in a uniformly accelerated reference frame in special relativity:
  • Desloge, E. A., & Philpott, R. J. (1987). Uniformly accelerated reference frames in special relativity. American Journal of Physics, 55(3), 252–261. https://doi.org/10.1119/1.15197 (world lines on page 258)
  • Hamilton, J. D. (1978). The uniformly accelerated reference frame. American Journal of Physics, 46(1), 83–89. https://doi.org/10.1119/1.11169 (world lines for a ray of light on page 85, for a massive particle on page 86)
But in the case of a non-vertical initial velocity what is the trajectory? What kind of curve does a particle draw on a vertical wall of the elevator? Do you know reference papers or books on this subject?
Thank you for your answers.
 
Physics news on Phys.org
A point particle in a homogeneous electric field, neglecting radiation reaction, realizes a particle with constant proper acceleration. The trajectories are hyperbolae.
 
Wikipedia (Rindler coordinates): "we obtain a picture which looks suspiciously like the family of all semicircles through a point and orthogonal to the Rindler horizon"
Thus, the trajectories of photons in the accelerated elevator seem to be circular!
 
Mathieu Rouaud said:
Wikipedia (Rindler coordinates): "we obtain a picture which looks suspiciously like the family of all semicircles through a point and orthogonal to the Rindler horizon"
Thus, the trajectories of photons in the accelerated elevator seem to be circular!
Semi-circular, yes. Given of course a very large elevator where spacetime is still flat.
 
Well, but circles in a Lorentzian plane are in fact hyperbolae (or light cones), namely (in "Minkoski-Cartesian coordinates")
$$\eta_{\mu \nu} x^{\mu} x^{\nu}=\text{const}.$$
See the picture in Wikipedia just close the quoted passage.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...

Similar threads

Back
Top