Electrical Circuits Reactive Networks Question

Click For Summary
SUMMARY

The discussion revolves around analyzing electrical circuits with reactive components, specifically focusing on low and high-frequency behaviors of inductors and capacitors. At low frequencies, capacitors act as open circuits, resulting in zero current and voltage at the load. Conversely, at high frequencies, inductors behave as open circuits, allowing current to flow through resistors and enabling voltage calculations using the voltage divider formula. The conversation also touches on the bridged-T filter configuration and its implications for circuit analysis.

PREREQUISITES
  • Understanding of reactive components: inductors and capacitors
  • Knowledge of voltage divider principles
  • Familiarity with bridged-T filter configurations
  • Basic circuit analysis techniques
NEXT STEPS
  • Study the behavior of inductors and capacitors in AC circuits
  • Learn about bridged-T filter design and its applications
  • Explore voltage divider circuits in reactive networks
  • Review transfer function analysis for cascaded filter sections
USEFUL FOR

Electrical engineering students, circuit designers, and anyone involved in analyzing reactive networks in electrical circuits.

johnwillbert82
Messages
11
Reaction score
0

Homework Statement


e3C9ZR3.png


Homework Equations


At low voltage frequency (inductors) L become short circuit and (capacitors) C becomes open circuit
At high voltage frequency (inductors) L become open circuit and (capacitors) C becomes short circuit

The Attempt at a Solution



Part A
At low frequency, all the capacitors are open, so no current can't run beyond Rs. Hence current at the load is zero so voltage is also zero

Part B
At high frequency, all the inductors are open, so the only path for the current is through Rs and around all the loops at the top where all the capacitors use to be (skipping all resistors)

So now it is the voltage supply Rs and the load in series, so a voltage divider can be used to workout the voltage across the load

V1 = V(Supply) x R1 / (R1 + R2)

v(Load) = 10 x 35 / (35 + 30) = 5.384615

Part C
I am assuming the angular frequency has no effect on the voltage as T = 1/f and omega = 2PIf so the frequency cancels out
This is most likely wrong

Part D
Using the same value from Part C, I would use P = V^2/R where R is 35

I think I have the first two parts correct and the last two parts wrong
any help?
 
Physics news on Phys.org
johnwillbert82 said:
Part A
At low frequency, all the capacitors are open, so no current can't run beyond Rs. Hence current at the load is zero so voltage is also zero
At low frequencies, current won't see a path through the capacitors, so why wouldn't current flow through the resistors to reach the load?
 
  • Like
Likes   Reactions: johnwillbert82
Because of the short circuits were all the inductors use to be, thus the resistors and the load are isolated
 
At low frequencies the inductors will quickly curtail any signal that tries to take the resistor route; They'll look like shorts to ground along the path.

Parts (c) and (d) look like you're supposed to know something significant about the "unit cell" behavior, since there are three identical filter sections in cascade. I can identify them as so-called bridged T filters. Perhaps there's a property of them that allows you to use transfer function approach?
 
  • Like
Likes   Reactions: johnwillbert82
gneill said:
At low frequencies the inductors will quickly curtail any signal that tries to take the resistor route; They'll look like shorts to ground along the path.

Parts (c) and (d) look like you're supposed to know something significant about the "unit cell" behavior, since there are three identical filter sections in cascade. I can identify them as so-called bridged T filters. Perhaps there's a property of them that allows you to use transfer function approach?

So am I right to assume since the signals are "shorted to ground", that after current passes through Rs and the first resistor, it is "curtailed" by any inductors and no other resistors or the load receives any current, which is why I put zero.

In regards to C and D, don't think I've learned about any of that yet but thanks
 
johnwillbert82 said:
So am I right to assume since the signals are "shorted to ground", that after current passes through Rs and the first resistor, it is "curtailed" by any inductors and no other resistors or the load receives any current, which is why I put zero.
Yes.
 
  • Like
Likes   Reactions: johnwillbert82
johnwillbert82 said:
So am I right to assume since the signals are "shorted to ground", that after current passes through Rs and the first resistor, it is "curtailed" by any inductors and no other resistors or the load receives any current, which is why I put zero.
That is correct, and an improvement on how you explained it earlier.

In regards to C and D, don't think I've learned about any of that yet but thanks
Any idea how you might be expected to attack this problem? Have you looked at something similar to it in class, perhaps calculated the bridged-T resonant frequencies?
 
  • Like
Likes   Reactions: johnwillbert82
NascentOxygen said:
That is correct, and an improvement on how you explained it earlier.Any idea how you might be expected to attack this problem? Have you looked at something similar to it in class, perhaps calculated the bridged-T resonant frequencies?

Alright thanks for the help and clarification :)

Nope, no idea at all on these, going to review my notes and lectures and see if there's anything I've missed
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 62 ·
3
Replies
62
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K