Electrodynamics - finding potential of a non conducting shell

jerry222
Messages
5
Reaction score
1
Homework Statement
Consider a spherical, charged, non-conducting shell of radius R. Given "surface potential", find potential at any distance.

I do realise there might be such a thing as a surface potential but how can i relate it to R, the distance? Am i supposed to solve the laplace equation with the given surface potential as a solution? I'm a bit stuck, appreciate any hint
Relevant Equations
$\Del V = 0$
1678984406573.png
 
Physics news on Phys.org
jerry222 said:
Homework Statement:: Consider a spherical, charged, non-conducting shell of radius R. Given "surface potential", find potential at any distance.

I do realise there might be such a thing as a surface potential but how can i relate it to R, the distance? Am i supposed to solve the laplace equation with the given surface potential as a solution? I'm a bit stuck, appreciate any hint
Relevant Equations:: $\Del V = 0$

View attachment 323688
Have you tried part (b) first?
From the answer to that you should be able to get the answer to (a) if the integral is not too nasty.
 
jerry222 said:
Am i supposed to solve the laplace equation with the given surface potential as a solution?
Yes. My hint would be to notice that the potential on the surface of the sphere, that you are given, can be expressed as the sum of just a few Legendre polynomials with certain coefficients. Then compare to the general solution of Laplace's equation in spherical coordinates for problems with azimuthal symmetry. Hopefully, you're familiar with equation (14) here.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top