Electrodynamics - finding potential of a non conducting shell

jerry222
Messages
5
Reaction score
1
Homework Statement
Consider a spherical, charged, non-conducting shell of radius R. Given "surface potential", find potential at any distance.

I do realise there might be such a thing as a surface potential but how can i relate it to R, the distance? Am i supposed to solve the laplace equation with the given surface potential as a solution? I'm a bit stuck, appreciate any hint
Relevant Equations
$\Del V = 0$
1678984406573.png
 
Physics news on Phys.org
jerry222 said:
Homework Statement:: Consider a spherical, charged, non-conducting shell of radius R. Given "surface potential", find potential at any distance.

I do realise there might be such a thing as a surface potential but how can i relate it to R, the distance? Am i supposed to solve the laplace equation with the given surface potential as a solution? I'm a bit stuck, appreciate any hint
Relevant Equations:: $\Del V = 0$

View attachment 323688
Have you tried part (b) first?
From the answer to that you should be able to get the answer to (a) if the integral is not too nasty.
 
jerry222 said:
Am i supposed to solve the laplace equation with the given surface potential as a solution?
Yes. My hint would be to notice that the potential on the surface of the sphere, that you are given, can be expressed as the sum of just a few Legendre polynomials with certain coefficients. Then compare to the general solution of Laplace's equation in spherical coordinates for problems with azimuthal symmetry. Hopefully, you're familiar with equation (14) here.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top