Petar Mali
- 283
- 0
If we have case \rho=0, \vec{j}=\vec{0}
then we have this equations
\Delta\vec{E}-\frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2}
\Delta\vec{B}-\frac{1}{c^2}\frac{\partial^2 \vec{B}}{\partial t^2}
Particular solutions of this equation
\vec{E}=\vec{E}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
\vec{B}=\vec{B}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
If we have coordinate frames S,S'
System S' has relative velocity \vec{u} in x direction compared with S
System S'
\vec{E}'=\vec{E}_0' e^{i(w't'-\vec{k}'\cdot\vec{r}')}
\vec{B}'=\vec{B}'_0 e^{i(w't'-\vec{k}'\cdot\vec{r}')}
System S
\vec{E}=\vec{E}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
\vec{B}=\vec{B}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
Why phase
wt-\vec{k}\cdot\vec{r}
must be invariant?
then we have this equations
\Delta\vec{E}-\frac{1}{c^2}\frac{\partial^2 \vec{E}}{\partial t^2}
\Delta\vec{B}-\frac{1}{c^2}\frac{\partial^2 \vec{B}}{\partial t^2}
Particular solutions of this equation
\vec{E}=\vec{E}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
\vec{B}=\vec{B}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
If we have coordinate frames S,S'
System S' has relative velocity \vec{u} in x direction compared with S
System S'
\vec{E}'=\vec{E}_0' e^{i(w't'-\vec{k}'\cdot\vec{r}')}
\vec{B}'=\vec{B}'_0 e^{i(w't'-\vec{k}'\cdot\vec{r}')}
System S
\vec{E}=\vec{E}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
\vec{B}=\vec{B}_0 e^{i(wt-\vec{k}\cdot\vec{r})}
Why phase
wt-\vec{k}\cdot\vec{r}
must be invariant?