Elegant proof of Fermats Last theorem?

  • Thread starter Thread starter robert80
  • Start date Start date
  • Tags Tags
    Proof Theorem
robert80
Messages
66
Reaction score
0
Elegant proof of Fermats Last theorem?

Hello to all. I have found an elegant would be solution of Fermats člast theorem and I would like to kindly ask you where is the mistake, since I am not skilled in Math...

Proof: Let us suppose that a,b,c are coprimes, so if we construct the from a,b,c the smallest triangle for solution of the Fermats Last Theorem. so let's suppose that the sollution exist, a^n + b^n = c^n so if we sqare the equation it will hold true that (a^n + b^n)^2 = (c^n)^2 so -----> a^2n + b^2n + 2a^nb^n = c^2n ----------> 2a^nb^n = c^2n - b^2n - a^2n, from the number theory we know that it follows that c^2n - b^2n is devidable by a^n, so c^2n - b^2n = a^n*k where k is the element of natural numbers. so let's multiply the original Fermats equation by factor k, so ------> a^n*k + b^n*k = c^n*k, let's now substitute the term a^n*k by c^2n - b^2n so:-------> c^2n - b^2n + b^n*k = c^n*k -------->b^n*(k - b^n) = c^n*(k - c^n), since b and c are coprimes b^n = (k - c^n)*m and c^n = (k - b^n)*m where m again is the element of Natural numbers. so--------> c^n + b^n*m = b^n + c^n*m, we see that m is 1, so -----> k = c^n + b^n let's now put that into 2a^nb^n = c^2n - b^2n - a^2n -----------> let's divide now the whole equation by a^n ----------------> 2b^n = c^n + b^n - a^2 -------------> b^n = c^n - a^2 and since a^n + b^n = c^n ---------> b^n = a^n + b^n - a^2 ------------> a^n = a^2 -------------> n = 2 if the solution of the fermats last theorem exists.

I believe n is the elemnt of odd natural numbers, and not natural, but for the proof itself this is not vital I suppose...

Thank you guys in advance.
 
Physics news on Phys.org


Dividing a2n by an yields an, not a2.

Thread closed.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top