I EM equations - am I missing something?

AI Thread Summary
The discussion highlights a perceived mismatch in Maxwell's equations, where there are 8 equations but only 6 unknown variables, leading to confusion about the system's degrees of freedom. It is clarified that position and time are independent variables, not parameters, which affects the counting of equations and variables. The necessity of boundary conditions is emphasized, indicating that without them, the system would be underdetermined. The conversation concludes that a one-to-one ratio between equations and unknowns is not required for differential equations, resolving the initial confusion. Overall, the complexities of electromagnetic equations and their dependencies on boundary conditions are underscored.
Maxicl14
Messages
3
Reaction score
0
Summary:: There seems to be a mismatch, in the "Maxwell's" equations, between the number of equations and number of variables.

I was trying to play around with the equations for Electromagnetism and noticed something unusual. When expanded, there are 8 equations, 6 unknown variables, and 4 parameter variables. When the parameter variables are set using 4 more equations, the result is 10 variables and 12 equations. This seems 2 equations too many.

The variables I am referring to:
Ex, Ey, Ez, Bx, By, Bz,
x, y, z, t

The equations I am referring to:
1 from divergence of E
1 from divergence of B
3 from curl of E
3 from curl of B
4 from setting parameters: x=X, y=Y, z=Z, t=T.To give an example, the simple harmonic equations may be:
(d2/dt2) X(t) = -X(t)
t = T
This results in a unique solution of X (at t=T). 2 equations. 2 variables. Unique solution.

So why do Maxwell's equations behave differently, or do they? May it be to do with initial conditions? May some equations imply others?

Thank you, Max.
 
Physics news on Phys.org
You are missing a lot, I'm afraid. Let's start with the biggest one: if you did not have additional degrees of freedom the system would be completely determined without needing to specify the boundary conditions. Therefore the system wouldn't depend on the boundary conditions, so E&M would not be useful - there would be fields that were what they were and that would be that.
 
I understand that boundary conditions can be set, for example through the J function. Or by introducing another equation.
But here surely there are "-2" degrees of freedom, not 2 degrees of freedom, so the system seems oversaturated with constraints...
Do some equations/relations imply others?
 
Your counting seems weird. There are 6 functions of position and time (the components of the fields). Position and time are not parameters but independent variables. And you have 8 differential equations.
If you have one unknown function and one differential equation you cannot completely determine the function. These are not algebraic equations to have a 1 to 1 ratio between equations and unknowns.
 
nasu said:
Your counting seems weird. There are 6 functions of position and time (the components of the fields). Position and time are not parameters but independent variables. And you have 8 differential equations.
If you have one unknown function and one differential equation you cannot completely determine the function. These are not algebraic equations to have a 1 to 1 ratio between equations and unknowns.
Oh ok. So 1 to 1 not necessary. Thank you.
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...

Similar threads

Replies
13
Views
2K
Replies
9
Views
9K
Replies
10
Views
275
Replies
19
Views
2K
Replies
9
Views
2K
Back
Top