I EM equations - am I missing something?

AI Thread Summary
The discussion highlights a perceived mismatch in Maxwell's equations, where there are 8 equations but only 6 unknown variables, leading to confusion about the system's degrees of freedom. It is clarified that position and time are independent variables, not parameters, which affects the counting of equations and variables. The necessity of boundary conditions is emphasized, indicating that without them, the system would be underdetermined. The conversation concludes that a one-to-one ratio between equations and unknowns is not required for differential equations, resolving the initial confusion. Overall, the complexities of electromagnetic equations and their dependencies on boundary conditions are underscored.
Maxicl14
Messages
3
Reaction score
0
Summary:: There seems to be a mismatch, in the "Maxwell's" equations, between the number of equations and number of variables.

I was trying to play around with the equations for Electromagnetism and noticed something unusual. When expanded, there are 8 equations, 6 unknown variables, and 4 parameter variables. When the parameter variables are set using 4 more equations, the result is 10 variables and 12 equations. This seems 2 equations too many.

The variables I am referring to:
Ex, Ey, Ez, Bx, By, Bz,
x, y, z, t

The equations I am referring to:
1 from divergence of E
1 from divergence of B
3 from curl of E
3 from curl of B
4 from setting parameters: x=X, y=Y, z=Z, t=T.To give an example, the simple harmonic equations may be:
(d2/dt2) X(t) = -X(t)
t = T
This results in a unique solution of X (at t=T). 2 equations. 2 variables. Unique solution.

So why do Maxwell's equations behave differently, or do they? May it be to do with initial conditions? May some equations imply others?

Thank you, Max.
 
Physics news on Phys.org
You are missing a lot, I'm afraid. Let's start with the biggest one: if you did not have additional degrees of freedom the system would be completely determined without needing to specify the boundary conditions. Therefore the system wouldn't depend on the boundary conditions, so E&M would not be useful - there would be fields that were what they were and that would be that.
 
I understand that boundary conditions can be set, for example through the J function. Or by introducing another equation.
But here surely there are "-2" degrees of freedom, not 2 degrees of freedom, so the system seems oversaturated with constraints...
Do some equations/relations imply others?
 
Your counting seems weird. There are 6 functions of position and time (the components of the fields). Position and time are not parameters but independent variables. And you have 8 differential equations.
If you have one unknown function and one differential equation you cannot completely determine the function. These are not algebraic equations to have a 1 to 1 ratio between equations and unknowns.
 
nasu said:
Your counting seems weird. There are 6 functions of position and time (the components of the fields). Position and time are not parameters but independent variables. And you have 8 differential equations.
If you have one unknown function and one differential equation you cannot completely determine the function. These are not algebraic equations to have a 1 to 1 ratio between equations and unknowns.
Oh ok. So 1 to 1 not necessary. Thank you.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top