EM Radiation oscillating charged mass

Click For Summary
SUMMARY

The discussion centers on calculating the intensity of electromagnetic radiation emitted by a charged mass attached to a spring, oscillating under the influence of gravity. The particle's motion is modeled as a harmonic oscillator, described by the equation x(t) = d cos(wt), with acceleration a = -w²d cos(wt). The intensity is derived using Larmor's formula and the Poynting vector, leading to the expression S = u₀ q² a² / (32 π m c). The participants emphasize the importance of visualizing the geometry of the problem to relate the solid angle to the area of the radiation ring.

PREREQUISITES
  • Understanding of harmonic oscillators and their equations of motion.
  • Familiarity with Larmor's formula for radiation power.
  • Knowledge of the Poynting vector and its application in electromagnetic theory.
  • Basic geometry of solid angles and their relationship to area in three-dimensional space.
NEXT STEPS
  • Study the derivation and application of Larmor's formula in detail.
  • Learn about the Poynting vector and its significance in electromagnetic radiation calculations.
  • Explore solid angle calculations and their geometric implications in physics.
  • Investigate the behavior of electric dipoles and their radiation patterns in oscillatory motion.
USEFUL FOR

Physics students, researchers in electromagnetism, and anyone interested in the dynamics of charged particles and their radiation properties.

roeb
Messages
98
Reaction score
1

Homework Statement



A particle of mass m and charge q is attached to a spring with force constant k, hanging from the ceiling. Its equilibrium position is a distance h above the floor. It is pulled down a distance d below equilibrium and released, at time t = 0;

Under the usual assumptions (d << lambda << h) calculate the intensity of the radiation hitting the floor as a function of the distance R from the point directly below q.

Homework Equations





The Attempt at a Solution


I see that this is a harmonic oscillator that could be described by x(t) = d cos(wt)
and a = -w*w*dcos(wt)

I would like to use Larmor's formula: P = u_0 q^2 a^2 / ( 6 pi m c) but I believe that I may need to revert back the to Poynting vector because we are only trying to find intensity [W/area] so: S = u_0 q^2 a^2 / ( 32 pi m c).

I think I'm having a hard time determining how to draw the picture to visualize this situation. How do I handle finding the intensity on the floor? I see that the distance from the mass to the floor is (R^2 + (h+delta)^2)^1/2.

Does anyone have any tips on how to get started with this? Do I need to rewrite the electric and magnetic fields and recalculate the Poynting vector from scratch (re-derive the electric dipole equations essentially?)
 
Physics news on Phys.org
Draw the charge at a height h above a plane. Draw a ring of radius R and thickness dR in said plane centered on the charge. Draw the angles theta and theta + d(theta) that the ring makes.

From http://www.phy.duke.edu/~rgb/Class/phy319/phy319/node146.html

We find the differential power, dP, into a solid angle d(omega) goes as:

dP/d(omega) is proportional to a^2*sin^2(theta) eq. 18.35

d(omega) = sin(theta)*d(theta)*d(phi) See solid angle:

http://en.wikipedia.org/wiki/Solid_angle

Convince your self that the power that goes through the ring is proportional to:

a^2*sin^3(theta)*d(theta)

There is a geometric relationship between dR and d(theta) that you should be able to find from your drawing.

You know dP/d(omega) but you want dP/dA where dA is the area of the ring.

But dP/dA = dP/d(omega)*d(omega)/dA

All you need is the relationship between d(omega) and dA.

Corrections welcome, hope this helps!
 
Hello Spinnor,

Thanks for your excellent response, I've almost figured it out.

From the picture I see that: dR2 = 2(h2 + R2) + dR2 + 2RdR - 2 sqrt(h2 +R2) sqrt( h2 + (R+dR)2) cos( d(theta) )

I decided that this was a mess but we could probably simplify it to where (R+dR)2 ~= R2 so I get: dR = (h2 + R2) d(theta).

Then using the solid angle d(omega) = sin(theta) d(theta) d(phi) I re-arrange and plug it in.

d(omega) = sin(theta) dR d(phi) / sqrt(h2 + R2)

Now there is where I've struggled. I can't seem to translate that into a useful d(omega)/dA expression. Is my approximation for dR correct? Or am I missing something else?
 
I think we want dA = R*d(phi)*dR

d(omega)/dA =[sin(theta)*d(theta)*d(phi)]/ R*d(phi)*dR

dR is related to d(theta)

[h^2+R^2]*d(theta)/h = dR , so

d(omega)/dA = [sin(theta)*d(theta)]/R*dR

=[h*sin(theta)*d(theta)]/R*[h^2+R^2]*d(theta)

=[h*sin(theta)]/(R*[h^2+R^2])

So it looks like dP/dA goes as

a^2*sin^2(theta)*d(omega)/dA

We want to get sin(theta) in terms of R. Let straight down be theta = 0, then R/[h^2+R^2]^.5 = sin(theta)

This was pretty sloppy. Better next time, hope it helps.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
788
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
2
Views
3K