Energy band in K space VS real space

  • Thread starter Thread starter jackychenp
  • Start date Start date
  • Tags Tags
    Band Energy Space
jackychenp
Messages
26
Reaction score
0
Hi All,

There is a simple question in my mind.
A band with energy Ek has dispersion in k space. Then what it looks like in the real space?
 
Physics news on Phys.org
The bands only exist in k-space, since the effective mean field one-particle Hamiltonian (Fock operator/Kohn-Sham operator), of which the e(k) are the eigenvalues, is diagonal in k-space, but not in real space.

If you transform the eigenstates of this operator (the crystal orbitals) into real space, you get the Wannier orbitals, which look closely like normal atomic orbitals (in particular, they are identical in each unit cell). But these Wannier orbitals do not diagonalize the effective one-particle Hamiltonian anymore, so there is no e(r) relation in this sense.
 
Let´s assume a perfect crystal and no scattering processes. Consider an electron and constant external electric field. If the electron were free, it would accelerate at uniform rate. However, the electron moves in a periodic structure. The E vs k relationship gives us an important information: at a given value of k, the slope of the curve is proportional to the electron's speed. Thus, although the external field is constant the electron moves in a complex way given by the E-k curve.
 
Hi cgk,

Do you mean integrate in the whole Brillioun Zone to get Wannier orbitals? In that case, one wave function psi(k) is just part of orbitals.

cgk said:
The bands only exist in k-space, since the effective mean field one-particle Hamiltonian (Fock operator/Kohn-Sham operator), of which the e(k) are the eigenvalues, is diagonal in k-space, but not in real space.

If you transform the eigenstates of this operator (the crystal orbitals) into real space, you get the Wannier orbitals, which look closely like normal atomic orbitals (in particular, they are identical in each unit cell). But these Wannier orbitals do not diagonalize the effective one-particle Hamiltonian anymore, so there is no e(r) relation in this sense.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Back
Top