Crosson said:
If we are in a (flat) closed universe, then there will one day be a big crunch. When the universe turns around and starts going the other way, wouldn't it be appropriate to say that it "stored potential energy" when it expanded?
Have you considered the possibility that the work done by the universe as it expands is equal to the loss in energy of the redshifted photons? Each photon has E = hf, and the CMB phtons are at a redshift of 1000. That means they have given up 99.9% of their energy (to no one knows where).
You might be able to make this idea work, but it isn't a standard idea from anything I've read on the topic (energy in GR).
Some of the hurdles in making the idea work - how much energy does a unit volume of empty space contain (is it a consistent amount), does this energy generate gravitation or is it in any other way experimentally detectable (assuming that it does contribute to gravitation at least yields an experimental prediction that the stored energy should be related to the cosmological constant, and puts the idea on firmer philosophical ground, but is likely to yield a theory that isn't vanilla GR.)
Another isssue is how do you do the bookeeping to measure said volume. The volume I was talking about earlier was the volume in one specific coordinate system. Defining the volume in terms that have meaning in an arbitrary coordinate system isn't going to be easy if it's possible at all.
The standard notion of energy in GR is firmly grounded in the mathematical structure of asymptotically flat space-times at infinity, and thus only defined in asymptotically flat space-times. There are actually two sorts of energy defined (the Bondi energy and the ADM energy), which vary in terms of which infinity one looks at (there is null infinity, and spacelike infinity - timelike infinity doesn't give any meaningful notion of energy). The two sorts of energy turn out to be closely related, though it takes a lot of work to establish this. For a really full discussion of this, you can see Wald's "General Relativity", but it's rather advanced stuff.
[add]
Actually defnining the volume in a particular coordinate system isn't the issue, the problem is finding some way to keep the invariant mass of the system conserved in all coordinate systems - i.e. to write down some expression for the energy-momentum 4-vector of the system in a coordinate independent fashion. Note that while some non-flat metrics, like isotropic expanding cosmologies, have fairly "natural" coordinate systems, an arbitrary non-asymptotically flat metric will not necessarily have any particular "natural" coordinate system.