Hi(adsbygoogle = window.adsbygoogle || []).push({});

I have a small subtle problem with the sign of the energy-momentum tensor for a scalar field as derived by varying the metric (s.b.). I would appreciate very much if somebody could help me on my specific issue. Let me describe the problem in more detail:

I conform to the sign convention [itex]g_{\mu \nu} = (+,-,-,-)[/itex]. The Lagranagian for a real scalar field is

[tex] \mathcal{L} = \frac{1}{2} \dot{\Phi}^2- (\nabla \Phi)^2 - V(\Phi ) = \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ).[/tex]

From Noether Theorem we find the energy-momentum tensor

[tex]T^{\mu \nu} = \frac{\partial \mathcal{L}}{\partial (\partial_\mu \Phi)} \: \partial^\nu \Phi - \mathcal{L} g^{\mu \nu} = \partial^\mu \Phi \partial^\nu \Phi - \mathcal{L} g^{\mu \nu}.[/tex]

Now I want to derive this via varying the action

[tex]S = \int \mathcal{L} \sqrt{-g}\; dx^4[/tex]

in respect to [itex]g_{\mu \nu}[/itex]. In particular it holds

[tex]\delta S = \delta\int \mathcal{L} \sqrt{-g}\; dx^4 = -\frac{1}{2}\int T_{\mu \nu} \delta g^{\mu\nu} \sqrt{-g}\; dx^4.[/tex]

[itex]T_{\mu \nu}[/itex] is defined so that varying the action derived from the total Lagrangian

[tex] \mathcal{L_{\rm tot}} = \frac{1}{16\pi G} R + \mathcal{L}[/tex]

yields the Einstein field equations

[tex]G_{\mu \nu} = 8\pi G T_{\mu \nu}.[/tex]

(Note that

[tex]\delta\int\frac{1}{16\pi G} R \sqrt{-g}\; dx^4 = \int G_{\mu \nu} \delta g^{\mu \nu}\sqrt{-g}\; dx^4, [/tex]

therefore the - sign in the definition of [itex]T_{\mu \nu}[/itex].)

Now let's vary the lagrangian of the scalar field:

[tex]\delta \int \mathcal{L} \sqrt{-g}\; dx^4[/tex]

[tex] = \int \delta(\mathcal{L}) \sqrt{-g} + \mathcal{L} \delta(\sqrt{-g})\; dx^4[/tex]

[tex] = \int \delta \left( \frac{1}{2} g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi- V(\Phi ) \right) \sqrt{-g} + \mathcal{L} \left(-\frac{1}{2} g_{\mu \nu} \delta g^{\mu \nu}\right) \sqrt{-g}\; dx^4[/tex]

[tex] = \frac{1}{2}\int \left( \delta g^{\mu \nu} \partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \delta g^{\mu \nu} \right) \sqrt{-g}\; dx^4[/tex]

[tex] = \frac{1}{2}\int \left(\partial_\mu\Phi \;\partial_\nu\Phi - \mathcal{L} g_{\mu \nu} \right) \delta g^{\mu \nu} \sqrt{-g}\; dx^4.[/tex]

Comparing this with the definition of the [itex]T_{\mu \nu}[/itex] yields

[tex]T_{\mu \nu} = -\partial_\mu \Phi \partial_\nu \Phi + \mathcal{L} g_{\mu \nu}[/tex]

leading to the opposite sign as derived by the Noether Theorem.

I would appreciate very much if somebody could explain why I get the sign wrong. I know this is a subtle (and possibly unimportant) issue but getting the wrong sign without understanding why gives a bad feeling. Thank you for any help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Energy-momentum tensor for a scalar field (sign problem!)

**Physics Forums | Science Articles, Homework Help, Discussion**