I Energy Tensor Gradients: ∂βTμυ

  • I
  • Thread starter Thread starter dsaun777
  • Start date Start date
  • Tags Tags
    Energy Tensor
dsaun777
Messages
296
Reaction score
39
I understand, kind of, that ∇μTμυ=0 by conservation or coninuity. What would be ∂βTμυ when β=1,2,3 no time derivative.
 
Physics news on Phys.org
dsaun777 said:
I understand, kind of, that ∇μTμυ=0 by conservation or coninuity. What would be ∂βTμυ when β=1,2,3 no time derivative.
I hope that you are aware that there is a summation over ##\mu## in the first equation. What do you mean by "what would be..."? It is exactly what you have written, the partial derivative of a function, which is the component of a tensor in some coordinates.
 
martinbn said:
I hope that you are aware that there is a summation over ##\mu## in the first equation. What do you mean by "what would be..."? It is exactly what you have written, the partial derivative of a function, which is the component of a tensor in some coordinates.
I meant what would be the spatial gradient of the energy momentum tensor?
 
There's no general answer to this question...##\partial_\beta T_{\mu\nu}## depends on the stress energy tensor and the coordinates you chose...it's like asking "what's ##d\vec{v}/dt##?" without specifying anything about ##\vec{v}##. It's hard to figure out what you're trying to get at.

At most, I can say, in 4-D spacetime, with the restriction that ##\beta=1,2,3##, then ##\partial_\beta T_{\mu\nu}## is a set of 48 numbers.
 
Matterwave said:
There's no general answer to this question...##\partial_\beta T_{\mu\nu}## depends on the stress energy tensor and the coordinates you chose...it's like asking "what's ##d\vec{v}/dt##?" without specifying anything about ##\vec{v}##. It's hard to figure out what you're trying to get at.

At most, I can say, in 4-D spacetime, with the restriction that ##\beta=1,2,3##, then ##\partial_\beta T_{\mu\nu}## is a set of 48 numbers.
For some incompressable fluid with density ρ(xμ,t ) at rest what is gradient of the stress energy tensor Tαβ
 
dsaun777 said:
I understand, kind of, that ∇μTμυ=0 by conservation or coninuity. What would be ∂βTμυ when β=1,2,3 no time derivative.
T_{\mu\nu:\beta} is covariant component of a three rank tensor allowing $$\beta=0,1,2,3$$ though I do not know if there is a physical meaning on it.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top