Is Chaos a Property of Time Since the Big Bang?

  • Thread starter Thread starter aaryan0077
  • Start date Start date
  • Tags Tags
    Bigbang Entropy
AI Thread Summary
The discussion centers on the concepts of order and disorder in relation to the Big Bang and thermal equilibrium. It questions whether chaos is a property of time, suggesting that since chaos requires comparative states, it may only be meaningful after time has begun. The uniform temperature of the cosmic microwave background (CMB) at 2.73 K raises concerns about equilibrium, as different regions of the universe have never been in causal contact, leading to the "horizon problem." The concept of cosmic inflation is introduced as a solution, allowing distant parts of the universe to achieve equilibrium while still being in a highly ordered state. Overall, the relationship between chaos, order, and time remains complex and unresolved.
aaryan0077
Messages
69
Reaction score
0
First I don't understand that what is order and disorder, as said that thermal equilibrium is disorder, but for equilibrium there is only one state, but 1st law of themodynamics says that a state with larger no. of microstate is much probable than one with less no. So equilibrium can be only in one way, so should not it be order.
Now big bang is said to be most ordered state, as chaos started after it, but if it was ordered what the 2.73 K microwave background? This is same everywhere so there must be equilibrium, so we must be in state of disorder. Also, to measure chaos, we need two different states to compare, means we need "time" for chaos to be meaningful. Does this means chaos is property of time? And as time started at big bang so rather say chaos is property of big bang?
 
Space news on Phys.org
aaryan0077 said:
First I don't understand that what is order and disorder, as said that thermal equilibrium is disorder, but for equilibrium there is only one state, but 1st law of themodynamics says that a state with larger no. of microstate is much probable than one with less no. So equilibrium can be only in one way, so should not it be order.
Now big bang is said to be most ordered state, as chaos started after it, but if it was ordered what the 2.73 K microwave background? This is same everywhere so there must be equilibrium, so we must be in state of disorder. Also, to measure chaos, we need two different states to compare, means we need "time" for chaos to be meaningful. Does this means chaos is property of time? And as time started at big bang so rather say chaos is property of big bang?
The reason why this is an issue is that if you look carefully at the way the universe expanded, and just assume the classical big bang for a moment (no inflation), then different parts on the sky that are now at 2.73K were never in causal contact with one another. Having never been in contact, there was no way for the different parts of the sky to come to equilibrium. This is known as the "horizon problem" of the classical big bang theory.

Something, therefore, must have set up our region of the universe at this uniform temperature, as it couldn't have happened within the classical big bang theory. This is one of the problems that cosmic inflation resolves: by proposing a different expansion history at early times, it allows widely-separated parts of the sky to have been in contact with one another, which allows them to come in equilibrium with one another.

But, if you look carefully at inflation, it is still a highly ordered state, one with fantastically low entropy. Anyway, if you want to read more on this, I highly recommend Sean Carroll's take on the subject. Here's a popular article he wrote not too long ago:
http://www.sciam.com/article.cfm?id=the-cosmic-origins-of-times-arrow
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Why was the Hubble constant assumed to be decreasing and slowing down (decelerating) the expansion rate of the Universe, while at the same time Dark Energy is presumably accelerating the expansion? And to thicken the plot. recent news from NASA indicates that the Hubble constant is now increasing. Can you clarify this enigma? Also., if the Hubble constant eventually decreases, why is there a lower limit to its value?

Similar threads

Back
Top