Entropy & Heat Flow: Understand Thermodynamics & Multiplicity

Click For Summary
The discussion centers on the relationship between entropy and heat flow in thermodynamics. It clarifies that an increase in a system's entropy occurs as heat from the surroundings enters the system, not that higher entropy allows more heat to flow in. The key thermodynamic formula mentioned is ΔS = ∫dQ/T, which relates changes in entropy to heat transfer. The Helmholtz energy is also referenced, indicating that a system's energy available for heat transfer is linked to its entropy. Overall, the conversation emphasizes the correct interpretation of how entropy and heat flow interact in open systems.
aaaa202
Messages
1,144
Reaction score
2
In my book it says: The bigger entropy of a system, the more heat from the surroundings can enter it. Now, I don't really understand why that is completely. Can anyone explain me? - both in terms of the actual thermodynamic formulas (thermodynamic identity etc.) and in terms of multiplicity?
 
Science news on Phys.org
aaaa202 said:
In my book it says: The bigger entropy of a system, the more heat from the surroundings can enter it. Now, I don't really understand why that is completely. Can anyone explain me? - both in terms of the actual thermodynamic formulas (thermodynamic identity etc.) and in terms of multiplicity?
I don't think that is what your book says, exactly. Perhaps there is a translation problem because what you have written does not really make any sense. It would make sense if the book said that as heat from the surroundings enters the system, the entropy of the system increases. This is because ΔS = ∫dQ/T

You are looking at an open system - one that can interact with its surroundings. In such a system, the amount of heat that can flow into the system depends on the temperature of the surroundings, the temperature of the system and the heat capacities of both the system and surroundings. As net heat flows into the system, the entropy of the system increases. This increase in entropy does not result in more heat entering the system.

AM
 
maybe I am interpreting it wrong. It's about the Helmholtz energy, and the book says:

"The helmholtz energy F is the total energy needed to create a system minus the energy you can get for free from an atmosphere at temperature T. This energy is given by TS, where S is the final entropy of the system. THE MORE ENTROPY A SYSTEM HAS THE MORE OF ITS ENERGY CAN ENTER AS HEAT "

What do you get from that? Where am I going wrong? :)
 
Thread 'Can somebody explain this: Planck's Law in action'
Plotted is the Irradiance over Wavelength. Please check for logarithmic scaling. As you can see, there are 4 curves. Blue AM 0 as measured yellow Planck for 5777 K green Planck for, 5777 K after free space expansion red Planck for 1.000.000 K To me the idea of a gamma-Ray-source on earth, below the magnetic field, which protects life on earth from solar radiation, in an intensity, which is way way way outer hand, makes no sense to me. If they really get these high temperatures realized in...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
486
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
333
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K