Equations of motion for Lagrangian of scalar QED

Click For Summary
SUMMARY

The discussion focuses on deriving the equations of motion for the Lagrangian of scalar Quantum Electrodynamics (QED). The initial equation presented involves the Lagrangian density, which includes terms for the scalar field, mass, and self-interaction. A correction is noted regarding a term involving the vector potential, where it should be \(A^2\varphi\) instead of \(A\varphi\). Additionally, the discussion highlights that the 4-divergence of the vector potential can be eliminated by selecting an appropriate gauge.

PREREQUISITES
  • Understanding of Lagrangian mechanics in quantum field theory
  • Familiarity with scalar Quantum Electrodynamics (QED)
  • Knowledge of gauge theories and their implications
  • Proficiency in mathematical notation and manipulation of equations
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in quantum field theory
  • Explore gauge fixing techniques in scalar QED
  • Learn about the implications of the 4-divergence in electromagnetic theory
  • Investigate the role of self-interaction terms in quantum field theories
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, theoretical physicists working on scalar QED, and students seeking to deepen their understanding of Lagrangian formulations in particle physics.

BobaJ
Messages
38
Reaction score
0
Homework Statement
I have the Lagrangian for scalar electrodynamics given by:
$$\mathcal{L}=-\frac{1}{4}F_{\mu\nu}(x)F^{\mu\nu}(x)+(D_\mu\varphi(x))^*(D^\mu\varphi(x))-V(\varphi^*(x)\varphi(x)) $$
where ##F_{\mu\nu}(x)=\partial_\mu A_\nu(x)-\partial_\nu A_\mu(x)## is the electromagnetic field strength tensor, ##D_\mu=\partial_\mu+ieA_\mu## ist the covariant derivative, e is the electric charge and ##V(\varphi^*\varphi)=m^2\varphi^*\varphi+\lambda(\varphi^*\varphi)^2## is the potential of the scalar field.

I have to determine the equations of motion for both the complex scalar field ##\varphi## and the electromagnetic field ##A_\mu## by using the Euler-Lagrange equations.
Relevant Equations
Now I know, that because the scalar field is complex it has twice the degrees of freedom so I get two equations of motion (?). They should be given by:
$$\frac{\partial \mathcal{L}}{\partial\varphi}-\partial_\mu\frac{\partial \mathcal{L}}{\partial(\partial_\mu \varphi)}=0$$ and $$\frac{\partial \mathcal{L}}{\partial\varphi^*}-\partial_\mu\frac{\partial \mathcal{L}}{\partial(\partial_\mu \varphi^*)}=0.$$

For the electromagnetic field $A_\mu$ it should just be:
$$\frac{\partial \mathcal{L}}{\partial A_\mu}-\partial_\rho\frac{\partial \mathcal{L}}{\partial(\partial_\rho A_\mu)}=0.$$
Well, I started with the first equation of motion for the scalar field, but I'm really not sure if I'm doing it the right way.

\begin{equation}
\begin{split}
\frac{\partial \mathcal{L}}{\partial \varphi} &= \frac{\partial}{\partial \varphi} [(\partial_\mu \varphi^* - ieA_\mu\varphi^*) (\partial_\mu\varphi+ieA_\mu\varphi)-m^2\varphi^*\varphi-\lambda(\varphi^*\varphi)^2]\\
&= \frac{\partial}{\partial \varphi} [\partial_\mu\varphi^*\partial_\mu\varphi + ieA_\mu\varphi\partial_\mu\varphi^*-ieA_\mu\varphi^*\partial_\mu\varphi+e^2A_\mu\varphi^*\varphi-m^2\varphi^*\varphi-\lambda(\varphi^*\varphi)^2] \\
&= ieA_\mu\partial_\mu\varphi^*+e^2A_\mu\varphi^*-m^2\varphi^*-2\lambda(\varphi^*)^2\varphi
\end{split}
\end{equation}

and

\begin{equation}
\begin{split}
\partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi} &= \partial_\mu\frac{\partial}{\partial (\partial_\mu\varphi)}[\partial_\mu\varphi^*\partial_\mu\varphi + ieA_\mu\varphi\partial_\mu\varphi^*-ieA_\mu\varphi^*\partial_\mu\varphi+e^2A_\mu\varphi^*\varphi-m^2\varphi^*\varphi-\lambda(\varphi^*\varphi)^2] \\
&= \partial_\mu [\partial_\mu\varphi^*-ieA_\mu\varphi^*]
\end{split}
\end{equation}

Does this at least go in the right direction? I'm really unsure. Thanks for your help. I appreciate it.
 
Physics news on Phys.org
This looks correct, except that the term in the last line of equation (1) proportional to A*phi should be A^2*phi.. The term involving the 4-divergence of the vector potential can be set to zero by adopting a particular gauge.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
5
Views
3K