I Equilibrium constant change with stoichiometric doubling (Callen)?

Click For Summary
The discussion centers on the relationship between the equilibrium constants of a reaction and its doubled stoichiometric coefficients. Callen initially derives that the equilibrium constant for the doubled reaction should be expressed as K_d = e^2K_s, but this contradicts the established relationship K_d = K_s^2. The confusion arises from a misunderstanding of logarithmic properties, specifically that exp(2ln K_s) equals (exp(ln K_s))^2, not e^2 * exp(ln K_s). This clarification resolves the algebraic error, affirming that K_d = K_s^2 is indeed correct. The exchange highlights the importance of accurately applying logarithmic identities in chemical equilibrium calculations.
EE18
Messages
112
Reaction score
13
Callen asks us (with respect to an ideal gas)
How is the equilibrium constant of a reaction related to that for the same reaction when written with stoichiometric coefficients twice as large? Note this fact with caution!
I had thought to proceed as follow. We have the definition for the singular reaction:
$$\ln K_s(T) = - \sum_j \nu_j \phi_j(T).$$
Now a reaction which is the sum of this reaction with itself (doubled reaction) has ##\nu_j \to 2\nu_j## so that its equilibrium constant obeys, by definition,
$$\ln K_d(T) = - \sum_j 2\nu_j \phi_j(T) = 2\ln K_s(T) \implies K_d = e^2K_s.$$
But when I look online it says the equilibrium constant should square in this case, ##K_d = K_s^2##. Can someone point out what I'm doing wrong?
 
Last edited:
Science news on Phys.org
##2 \ln x = \ln(x^2)##
 
TSny said:
##2 \ln x = \ln(x^2)##
You are saying to use
$$\ln K_d(T) = 2\ln K_s(T) = \ln K^2_s(T)\implies K_d = K_s^2$$
which makes sense to me. I'm embarrassed to say I don't know what I'm doing wrong by using
$$\exp(\ln K_d(T)) = K_d = \exp(2\ln K_s(T)) = e^2 exp(\ln K_s(T)) = e^2K_s$$
which is different. What elementary algebra is being slipped under on me here?
 
EE18 said:
You are saying to use
$$\ln K_d(T) = 2\ln K_s(T) = \ln K^2_s(T)\implies K_d = K_s^2$$
which makes sense to me. I'm embarrassed to say I don't know what I'm doing wrong by using
$$\exp(\ln K_d(T)) = K_d = \exp(2\ln K_s(T)) = e^2 exp(\ln K_s(T)) = e^2K_s$$
which is different. What elementary algebra is being slipped under on me here?
Note that ##\exp(2\ln K_s(T)) \neq e^2 \exp(\ln K_s(T))##.

Instead, ##\exp(2\ln K_s(T)) = [\exp(\ln K_s(T)]^2##. This follows from ##x^{ab} = (x^a)^b##.
 
TSny said:
Note that ##\exp(2\ln K_s(T)) \neq e^2 \exp(\ln K_s(T))##.

Instead, ##\exp(2\ln K_s(T)) = [\exp(\ln K_s(T)]^2##. This follows from ##x^{ab} = (x^a)^b##.
Oof, of course. ##\exp(2+\ln K_s(T)) =e^2K_s## which is of course not what we have here.

My bad, and thanks for the clarification on this silly error.
 
EE18 said:
Oof, of course. ##\exp(2+\ln K_s(T)) =e^2K_s## which is of course not what we have here.
Right.
 
Hello, We have a thermal camera and its purpose is to detect hot spots at different distances. We made an experiment with a JPEG picture and we noticed the following: At the same distance, one object at 600 degrees and an object at 38 degrees (human body) have the same pixel intensity (255 in grayscale). The image adjusted when the 600 degrees object exited the scene (parts of the human body and background became brighter). We will make a detection algorithm and we need to make sure only...
Been around 40 years since I took basic physics in college and while I remember doing some examples of insulation values / energy conduction, I doubt I could to the math now even if I could find the formulas. I have some some corrugated plastic sheet (think of the plastic signs you see on the side of the road) that is used in bee hives. Also have some used in a green house though a bit different in dimensions than this example but the general approach should still apply. Typically, both...
Problem: You’re an Uber driver with a Tesla Model 3. Today’s low: 30F, high: 65F. You want to reach a USD$ profit target in the least number of hours, but your choices could have added cost. Do you preheat the battery only when you are headed to the charging station (to increase the charging rate by warming the battery — however the battery might not be “warm enough” when your reach the charger and thus slower charging rates), or do you always “navigate to the charger” the entire day (which...