Equilibrium constant change with stoichiometric doubling (Callen)?

Click For Summary

Discussion Overview

The discussion revolves around the relationship between the equilibrium constant of a chemical reaction and its value when the stoichiometric coefficients are doubled. Participants explore the mathematical implications of this change, particularly focusing on the logarithmic properties of equilibrium constants.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Callen presents the initial question regarding how the equilibrium constant changes when stoichiometric coefficients are doubled, suggesting a relationship based on the logarithmic definition of the equilibrium constant.
  • Some participants propose that the correct relationship is given by the equation ##K_d = K_s^2##, indicating that the equilibrium constant squares when coefficients are doubled.
  • Others express confusion over the algebraic manipulation leading to the conclusion that ##K_d = e^2 K_s##, questioning the validity of this approach.
  • It is noted that ##\exp(2\ln K_s(T))## should be interpreted as ##[\exp(\ln K_s(T)]^2##, which clarifies the misunderstanding regarding the exponential function and logarithmic properties.
  • Participants acknowledge the error in the initial reasoning and express gratitude for the clarification on the algebra involved.

Areas of Agreement / Disagreement

There is no consensus reached regarding the initial interpretation of the relationship between the equilibrium constants. However, participants agree on the correct algebraic manipulation of the logarithmic expressions.

Contextual Notes

Participants highlight the importance of careful algebraic handling of logarithmic identities and the implications of stoichiometric changes on equilibrium constants, but do not resolve the broader implications of these relationships.

EE18
Messages
112
Reaction score
13
Callen asks us (with respect to an ideal gas)
How is the equilibrium constant of a reaction related to that for the same reaction when written with stoichiometric coefficients twice as large? Note this fact with caution!
I had thought to proceed as follow. We have the definition for the singular reaction:
$$\ln K_s(T) = - \sum_j \nu_j \phi_j(T).$$
Now a reaction which is the sum of this reaction with itself (doubled reaction) has ##\nu_j \to 2\nu_j## so that its equilibrium constant obeys, by definition,
$$\ln K_d(T) = - \sum_j 2\nu_j \phi_j(T) = 2\ln K_s(T) \implies K_d = e^2K_s.$$
But when I look online it says the equilibrium constant should square in this case, ##K_d = K_s^2##. Can someone point out what I'm doing wrong?
 
Last edited:
Science news on Phys.org
##2 \ln x = \ln(x^2)##
 
TSny said:
##2 \ln x = \ln(x^2)##
You are saying to use
$$\ln K_d(T) = 2\ln K_s(T) = \ln K^2_s(T)\implies K_d = K_s^2$$
which makes sense to me. I'm embarrassed to say I don't know what I'm doing wrong by using
$$\exp(\ln K_d(T)) = K_d = \exp(2\ln K_s(T)) = e^2 exp(\ln K_s(T)) = e^2K_s$$
which is different. What elementary algebra is being slipped under on me here?
 
EE18 said:
You are saying to use
$$\ln K_d(T) = 2\ln K_s(T) = \ln K^2_s(T)\implies K_d = K_s^2$$
which makes sense to me. I'm embarrassed to say I don't know what I'm doing wrong by using
$$\exp(\ln K_d(T)) = K_d = \exp(2\ln K_s(T)) = e^2 exp(\ln K_s(T)) = e^2K_s$$
which is different. What elementary algebra is being slipped under on me here?
Note that ##\exp(2\ln K_s(T)) \neq e^2 \exp(\ln K_s(T))##.

Instead, ##\exp(2\ln K_s(T)) = [\exp(\ln K_s(T)]^2##. This follows from ##x^{ab} = (x^a)^b##.
 
TSny said:
Note that ##\exp(2\ln K_s(T)) \neq e^2 \exp(\ln K_s(T))##.

Instead, ##\exp(2\ln K_s(T)) = [\exp(\ln K_s(T)]^2##. This follows from ##x^{ab} = (x^a)^b##.
Oof, of course. ##\exp(2+\ln K_s(T)) =e^2K_s## which is of course not what we have here.

My bad, and thanks for the clarification on this silly error.
 
EE18 said:
Oof, of course. ##\exp(2+\ln K_s(T)) =e^2K_s## which is of course not what we have here.
Right.
 

Similar threads

Replies
5
Views
823
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 23 ·
Replies
23
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 60 ·
3
Replies
60
Views
10K
  • · Replies 22 ·
Replies
22
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K