Klungo
- 135
- 1
Is it true that the following definitions of completeness are equivalent?
\mbox{For theory } \Sigma \mbox{ and for any sentence } A.
\mbox{ Either } \Sigma \vdash A \mbox{ or } \Sigma \vdash \lnot A
and
\mbox{ Either } A \in \Sigma \mbox{ or } (\lnot A) \in \Sigma.
(The second clearly implies the first.)
\mbox{For theory } \Sigma \mbox{ and for any sentence } A.
\mbox{ Either } \Sigma \vdash A \mbox{ or } \Sigma \vdash \lnot A
and
\mbox{ Either } A \in \Sigma \mbox{ or } (\lnot A) \in \Sigma.
(The second clearly implies the first.)