Equivalence Relations in A={a,b,c,d}: Proving the Bell Number Theorem

lwpirelliwl
Messages
2
Reaction score
0
Our math Teacher asked us to find how many equivalence relations are there in a set of 4 elements, the set given is A={a,b,c,d} I found the solution to this problem there are 15 different ways to find an equivalence relation, but solving the problem, i looked in Internet that the number of equivalence relations (Partitions) of an n-element Set are the Bell numbers, somebody told me this is a definition and does not requiere a proof, but can this statement above be a theorem? If this is so I would like to see the proof.

Thanks in advance
 
Physics news on Phys.org
What is given is the definition of Bell numbers. A proof is needed for the values as functions of n.
 
This exact question was posted verbatim in the General Math section. Methinks the OP has multiple accounts.
 
No I have multiple accounts, I'm just wondering mate first and wanted to put the question in the right forum
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top