A Essentially bounded functions and simple functions

  • A
  • Thread starter Thread starter Shaji D R
  • Start date Start date
  • Tags Tags
    Bounded Functions
Shaji D R
Messages
19
Reaction score
0
How to prove that essentially bounded functions are uniform limit of simple functions. Here measure is sigma finite and positive.
 
Physics news on Phys.org
I need help. I forgot to indicate that the function is measurable also.
 
Trick is usually to describe limit in terms of unions, intersections of measurable sets. I mean this in order to show that the limit is measurable. for the rest, partition your domain in "enough" (compact) pieces for the vertical intervals [n, n+1). I think I remember Wikipedia had a proof.
 
Last edited:
assume your function is bounded and divide up the range into small intervals. for each interval [a,b] take the functionm tohave value a on the inverse image of that interval...this gives you a simple function whichn lies within |b-a| of your function on that set...of course the limit is only uniform a.e. since the function is only essentially bounded and not bounded.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top