Estimate vibrational frequency of N2 molecule

AI Thread Summary
The discussion revolves around estimating the vibrational frequency of the N2 molecule using experimental heat capacity data. Participants analyze the relationship between energy expressions for a harmonic oscillator and the heat capacity, noting that the heat capacity is not constant and may involve additional degrees of freedom due to rotational energy. There is uncertainty about selecting the appropriate integer value for n in the energy equations, with some suggesting that n may not always be a whole number. The conversation highlights the complexity of the problem and the need for further guidance on the calculations involved. Overall, the challenge lies in accurately determining the vibrational frequency while considering the contributions from various energy modes.
Sam J
Messages
5
Reaction score
0

Homework Statement


Experimental data for the heat capacity of N2 as a function of temperature are provided.

Estimate the frequency of vibration of the N2 molecule.

Homework Equations


Energy of harmonic oscillator = (n+1/2)ħω

C=7/2kB

Average molecular energy = C*T

But this is an expression for the total energy of a molecule.
Presumably the amount of energy within the two vibrational modes is:

E=C*T

with

C=kB

The Attempt at a Solution


All I can think to do is equate the two expressions for the energy of the oscillator:

kBT=(n+1/2)ħω

But I have no idea where to go now. In order to find frequency I would want to solve for ω, from which frequency can be trivially determined. However, how am I to know which integer value to use for n?

I am also very unsure as to my construction of the problem.

Any help/guidance greatly appreciated.
 
Physics news on Phys.org
Sam J said:
Experimental data for the heat capacity of N2 as a function of temperature are provided.
What does this curve look like?
 
DrClaude said:
What does this curve look like?

T (Kelvin) 170 500 770 1170 1600 2000 2440
C/NkB 2.5 2.57 2.76 3.01 3.22 3.31 3.4

Apologies, not sure how to post a table of data.
 
Clearly, the heat capacity is not constant, whereas you expect it to be of the form C = f kB T / 2, where f is the number of quadratic degrees of freedom. What could be happening here?
 
You access rotational energy as well? So you have more degrees of freedom? But this doesn't answer the question "However, how am I to know which integer value to use for n?'...
 
Astrolover said:
You access rotational energy as well? So you have more degrees of freedom? But this doesn't answer the question "However, how am I to know which integer value to use for n?'...
n is not necessarily an integer. There can be situations where you get an effective number of dofs that is not a whole number.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top