- #1
lukasleopold
- 3
- 1
Hello,
excuse me if these happen to be basic questions, but I'm a psychologist/neuroscientist in training without any particular experience in physics, and I am just confronted with a very specific problem.
I need to measure the sound pressure experienced inside of an MRI scanner. Unfortunately, due to the strong magnetic field (3T) and my lack of an MRI-compatible decibel meter, I can only estimate it with sound pressure measurements taken from a certain distance.
So, how could I achieve this?
I guess that the first part of the question (ignoring the fact that it's in an MRI scanner) can be framed as "How can I estimate the sound pressure at the source of the sound from one or several measurements made at certain distances from it?".
What I have found by now is the formula for estimating changes in sound pressure using the Inverse Square Law, as described here: http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/isprob2.html
However, this doesn't work for my problem, because from what I gathered I will always arrive at estimations of Infinite dB at the sound source using this formula (what with dividing by zero and all). What am I doing wrong here?
A second issue is the fact that the sound is generated by the tubular MRI scanner, and the noise level that interests me is the one in the center of the tube. I imagine that this complicates the issue further, as the sound probably is changed by being reflected by the walls of the tube before exiting the scanner. I guess to factor this in completely one would have to know all kinds of parameters concerning the scanner tube. However, I am completely content with a "quick and dirty" solution to this - All I really need is a sensible estimation of the maximum sound pressure I could expect inside there.
Thank you very much!Lukas
excuse me if these happen to be basic questions, but I'm a psychologist/neuroscientist in training without any particular experience in physics, and I am just confronted with a very specific problem.
I need to measure the sound pressure experienced inside of an MRI scanner. Unfortunately, due to the strong magnetic field (3T) and my lack of an MRI-compatible decibel meter, I can only estimate it with sound pressure measurements taken from a certain distance.
So, how could I achieve this?
I guess that the first part of the question (ignoring the fact that it's in an MRI scanner) can be framed as "How can I estimate the sound pressure at the source of the sound from one or several measurements made at certain distances from it?".
What I have found by now is the formula for estimating changes in sound pressure using the Inverse Square Law, as described here: http://hyperphysics.phy-astr.gsu.edu/hbase/Acoustic/isprob2.html
However, this doesn't work for my problem, because from what I gathered I will always arrive at estimations of Infinite dB at the sound source using this formula (what with dividing by zero and all). What am I doing wrong here?
A second issue is the fact that the sound is generated by the tubular MRI scanner, and the noise level that interests me is the one in the center of the tube. I imagine that this complicates the issue further, as the sound probably is changed by being reflected by the walls of the tube before exiting the scanner. I guess to factor this in completely one would have to know all kinds of parameters concerning the scanner tube. However, I am completely content with a "quick and dirty" solution to this - All I really need is a sensible estimation of the maximum sound pressure I could expect inside there.
Thank you very much!Lukas