Euclidean Quantum Gravity and its relevance

Fractalismus
Messages
4
Reaction score
0
Hello all, I was wondering if Hawking's approach is still relevant. Found a book on his compilation of papers an amazon and had heard a talk by him suggesting it as a view to continue research. With all the hoo ha on M-theory and etc, would it be possible to buy this collection of papers for anything outside of its historical worth?

In addition, how relevant is "The Future of Cosmology" the set of papers written in honor of Hawking?

Most of my research deals with general relativity, looking at different means of quantization and seeking engineering applications/workarounds of the stress-energy tensor, in addition to solving chaotic systems posed in large scale structures numerically.
 
Physics news on Phys.org
So far it appears to have been mentioned in a book "Quantum Fluctuations of Spacetime"
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top