Albert1
- 1,221
- 0
$ \begin{align*} \int_{1}^{2}\dfrac {dx}{(x^2-2x+4)^{3/2}}\end{align*}$
Last edited:
M R said:As a first step I would complete the square. :)
Albert said:$\int_{1}^{2}\dfrac {dx}{(x^2-2x+4)^{3/2}}$
perfect ! you got it,your solution is really (Cool)Prove It said:[math]\displaystyle \begin{align*} \int_1^2{\frac{dx}{\left( x^2 - 2x + 4 \right) ^{\frac{3}{2}} }} &= \int_1^2{\frac{dx}{\left[ \left( x - 1 \right) ^2 + 3 \right] ^{\frac{3}{2}} }} \end{align*}[/math]
Now make the substitution [math]\displaystyle \begin{align*} x - 1 = \sqrt{3}\,\tan{(\theta)} \implies dx = \sqrt{3}\,\sec^2{(\theta)}\,d\theta \end{align*}[/math] and noting that when [math]\displaystyle \begin{align*} x = 1, \, \theta = 0 \end{align*}[/math] and when [math]\displaystyle \begin{align*} x = 2, \, \theta = \frac{\pi}{6} \end{align*}[/math]
--------