MHB Evaluate Sum: $x^4/(x-y)(x-z)+y^4/(y-z)(y-x)+z^4/(z-x)(z-y)$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on evaluating the expression $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$ using the defined values of x, y, and z. Participants confirm the correctness of the calculations and share insights into the algebraic manipulation required for the evaluation. The values of x, y, and z are derived from square roots, which adds complexity to the problem. The conversation highlights the importance of understanding the relationships between the variables in the expression. Ultimately, the evaluation leads to a deeper understanding of polynomial expressions and their properties.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x=\sqrt{7}+\sqrt{5}-\sqrt{3},\,y=\sqrt{7}-\sqrt{5}+\sqrt{3},\,z=-\sqrt{7}+\sqrt{5}+\sqrt{3}$.

Evaluate $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$.
 
Mathematics news on Phys.org
anemone said:
Let $x=\sqrt{7}+\sqrt{5}-\sqrt{3},\,y=\sqrt{7}-\sqrt{5}+\sqrt{3},\,z=-\sqrt{7}+\sqrt{5}+\sqrt{3}$.

Evaluate $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$.

$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$

= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$

= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$

now

$x^4(y-z) + y^4(z-x) + z^4(x-y)$

= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$

= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$

= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$

= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$

= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$

=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$

= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$

= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$

= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$

= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$

= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$



so the given expression

= $x^2 + y^2 +z^2 + xy + yz+ xz$

= $\dfrac{1}{2}((x+y)^2 + (y+z)^2 + (z+x)^2)$

= $\dfrac{1}{2}(4 * 7 + 4 * 5 + 4 * 3)= 30$
 
kaliprasad said:
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$

= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$

= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$

now

$x^4(y-z) + y^4(z-x) + z^4(x-y)$

= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$

= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$

= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$

= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$

= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$

=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$

= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$

= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$

= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$

= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$

= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$



so the given expression

= $x^2 + y^2 +z^2 + xy + yz+ xz$

= $\dfrac{1}{2}((x+y)^2 + (y+z)^2 + (z+x)^2)$

= $\dfrac{1}{2}(4 * 7 + 4 * 5 + 4 * 3)= 30$

Very good job, kaliprasad!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K