MHB Evaluate Sum: $x^4/(x-y)(x-z)+y^4/(y-z)(y-x)+z^4/(z-x)(z-y)$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion focuses on evaluating the expression $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$ using the defined values of x, y, and z. Participants confirm the correctness of the calculations and share insights into the algebraic manipulation required for the evaluation. The values of x, y, and z are derived from square roots, which adds complexity to the problem. The conversation highlights the importance of understanding the relationships between the variables in the expression. Ultimately, the evaluation leads to a deeper understanding of polynomial expressions and their properties.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x=\sqrt{7}+\sqrt{5}-\sqrt{3},\,y=\sqrt{7}-\sqrt{5}+\sqrt{3},\,z=-\sqrt{7}+\sqrt{5}+\sqrt{3}$.

Evaluate $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$.
 
Mathematics news on Phys.org
anemone said:
Let $x=\sqrt{7}+\sqrt{5}-\sqrt{3},\,y=\sqrt{7}-\sqrt{5}+\sqrt{3},\,z=-\sqrt{7}+\sqrt{5}+\sqrt{3}$.

Evaluate $\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$.

$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$

= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$

= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$

now

$x^4(y-z) + y^4(z-x) + z^4(x-y)$

= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$

= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$

= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$

= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$

= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$

=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$

= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$

= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$

= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$

= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$

= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$



so the given expression

= $x^2 + y^2 +z^2 + xy + yz+ xz$

= $\dfrac{1}{2}((x+y)^2 + (y+z)^2 + (z+x)^2)$

= $\dfrac{1}{2}(4 * 7 + 4 * 5 + 4 * 3)= 30$
 
kaliprasad said:
$\dfrac{x^4}{(x-y)(x-z)}+\dfrac{y^4}{(y-z)(y-x)}+\dfrac{z^4}{(z-x)(z-y)}$

= - ($\dfrac{x^4}{(x-y)(z-x)}+\dfrac{y^4}{(y-z)(x-y)}+\dfrac{z^4}{(z-x)(y-z)})$

= - $(\dfrac{x^4(y-z) + y^4(z-x) + z^4(x-y)}{(x-y)(y-z)(z-x)})$

now

$x^4(y-z) + y^4(z-x) + z^4(x-y)$

= $x^4(y-z) + yz(y^3-z^3) - x (y^4-z^4)$

= $x^4(y-z) + yz(y-z)(y^2+yz+z^2) - x(y-z)(y^3 + y^2z + yz^2 + z^3)$

= $(y-z)(x^4 + yz(y^2 +yz+z^2) - xy(y^2 + yz + z^2) - xz^3)$

= $(y-z)(x^4 + (y^2+yz+z^2)(yz-xy) - xz^3)$

= $(y-z)(x(x^3-z^3) + y(z-x)(y^2 + yz + z^2)$

=$(y-z)(z-x)(y(y^2 + yz + z^2) - x(x^2 + zx + z^2)$

= $(y-z)(z-x)(y^3 + y (yz+ z^2) - x^3 - x(zx + z^2)$

= $(y-z)(z-x)(y^3-x^3 + (y^2z + yz^2 - zx^2 - z^2 x)$

= $(y-z)(z-x)((y-x) (x^2 + xy + y^2) + (z(y^2 - x^2) +z^2(y-x))$

= $(y-z)(z-x)((y-x)(x^2 + xy + y^2 + z(y+x) + z^2)$

= $(-(x-y)(y-z)(z-x)(x^2 + y^2 + z^2 + xy+yz+zx)$



so the given expression

= $x^2 + y^2 +z^2 + xy + yz+ xz$

= $\dfrac{1}{2}((x+y)^2 + (y+z)^2 + (z+x)^2)$

= $\dfrac{1}{2}(4 * 7 + 4 * 5 + 4 * 3)= 30$

Very good job, kaliprasad!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top