Evaluate the sum of a function

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Function Sum
Click For Summary
SUMMARY

The sum of the function \( h(x) = \frac{9^x}{9^x + 3} \) evaluated from \( h\left( \frac{1}{401} \right) \) to \( h\left( \frac{400}{401} \right) \) can be simplified using the property \( h(x) + h(1-x) = 1 \). This property allows for pairing terms in the sum, resulting in \( 200 \) pairs, each summing to \( 1 \). Therefore, the total sum is \( 200 \), confirming the effectiveness of recognizing functional symmetries in solving such problems.

PREREQUISITES
  • Understanding of function evaluation
  • Familiarity with properties of functions
  • Basic knowledge of algebraic manipulation
  • Concept of symmetry in mathematical functions
NEXT STEPS
  • Explore properties of symmetric functions
  • Learn about function transformations and their implications
  • Study advanced techniques in summation of series
  • Investigate the application of functional equations in problem-solving
USEFUL FOR

Mathematics students, educators, and anyone interested in functional analysis and problem-solving techniques in algebra.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $h\left( \dfrac{1}{401} \right)+h\left( \dfrac{2}{401} \right)+\cdots+h\left( \dfrac{400}{401} \right)$ if $h(x)=\dfrac{9^x}{9^x+3}$.
 
Physics news on Phys.org
anemone said:
Evaluate $h\left( \dfrac{1}{401} \right)+h\left( \dfrac{2}{401} \right)+\cdots+h\left( \dfrac{400}{401} \right)$ if $h(x)=\dfrac{9^x}{9^x+3}$.

Notice that h(x)+h(1-x)=1.

Hence,

$$h\left(\frac{1}{401}\right)+h\left(\frac{400}{401}\right)=1$$
$$h\left(\frac{2}{401}\right)+h\left(\frac{399}{401}\right)=1$$
$$.$$
$$.$$
$$.$$
$$h\left(\frac{200}{401}\right)+h\left(\frac{201}{401}\right)=1$$

So the sum is 200.
 
Pranav said:
Notice that h(x)+h(1-x)=1.

Hence,

$$h\left(\frac{1}{401}\right)+h\left(\frac{400}{401}\right)=1$$
$$h\left(\frac{2}{401}\right)+h\left(\frac{399}{401}\right)=1$$
$$.$$
$$.$$
$$.$$
$$h\left(\frac{200}{401}\right)+h\left(\frac{201}{401}\right)=1$$

So the sum is 200.

Well done and thanks for participating, Pranav! I think this problem is doable only if one recognizes that in this case, $h(x)+h(1-x)=1$!(Happy)
 

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
955
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K