MHB Evaluating a Sum Problem: Find Value

  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on evaluating the infinite sum $$\sum_{m=1}^{\infty} \frac{1}{[\sqrt{m}]^3}$$ where $[x]$ denotes the nearest integer to $x$. Participants analyze how often each integer $k$ appears in the sequence generated by $\sqrt{m}$, concluding that each integer $k$ is repeated $2k$ times. This is derived from examining the intervals around $m^2$ that correspond to each integer. The conversation emphasizes the importance of understanding the distribution of integers in the sum to simplify calculations. Overall, the insights provided help clarify the approach to solving the sum problem.
Saitama
Messages
4,244
Reaction score
93
Problem:
Let $[x]$ be the nearest integer to $x$. (For $x=n+\frac{1}{2}, n\in \mathbb{N}$, let $[x]=n$).

Find the value of
$$\sum_{m=1}^{\infty} \frac{1}{[\sqrt{m}]^3}$$

Attempt:

I tried writing down a few terms and saw that $1$ repeats $2$ times, $2$ repeats $4$ times but I didn't check it for three. I think $k$ repeats $2k$ times but is there way to come to this conclusion without checking a few initial numbers and avoid the laborious calculation?

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Let $[x]$ be the nearest integer to $x$. (For $x=n+\frac{1}{2}, n\in \mathbb{N}$, let $[x]=n$).

Find the value of
$$\sum_{m=1}^{\infty} \frac{1}{[\sqrt{m}]^3}$$

Attempt:

I tried writing down a few terms and saw that $1$ repeats $2$ times, $2$ repeats $4$ times but I didn't check it for three. I think $k$ repeats $2k$ times but is there way to come to this conclusion without checking a few initial numbers and avoid the laborious calculation?

Any help is appreciated. Thanks!

do you want is nearest to $\sqrt{x}$

then let us look at the numbers nearest to $m^2$ they are from $m^2-(m-1)$ to $m^2+m$ that is m occurs 2m times
 
Hey Pranav! ;)

Let's see how often any specific number $k$ is repeated.If we would have $\sqrt m =k+\frac 1 2$, the number $k$ would just be repeated a last time.
That is, when we would have $m=(k+\frac 1 2)^2 = k^2+k+\frac 1 4$.
Since $m$ is an integer, $k$ is repeated for the last time when $m=k^2+k$.Consequently, $k-1$ was last repeated when $m=(k-1)^2+(k-1)$.
In other words, the number $k$ is repeated $\Big(k^2+k\Big) - \Big((k-1)^2+(k-1)\Big) = 2k$ times.Yes! You were right! (Sun)
 
I like Serena said:
Hey Pranav! ;)

Let's see how often any specific number $k$ is repeated.If we would have $\sqrt m =k+\frac 1 2$, the number $k$ would just be repeated a last time.
That is, when we would have $m=(k+\frac 1 2)^2 = k^2+k+\frac 1 4$.
Since $m$ is an integer, $k$ is repeated for the last time when $m=k^2+k$.Consequently, $k-1$ was last repeated when $m=(k-1)^2+(k-1)$.
In other words, the number $k$ is repeated $\Big(k^2+k\Big) - \Big((k-1)^2+(k-1)\Big) = 2k$ times.Yes! You were right! (Sun)

That was really nicely presented and explained. Thanks a lot ILS! :) (Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K