MHB Evaluating Arithmetic Expression

AI Thread Summary
The small '2' next to the -4 in the equation indicates an exponent, meaning -4 is squared, or multiplied by itself. The correct interpretation of the expression (3)(-4)² - (3)(-5) leads to calculating (3)(16) - (3)(-5). The calculations show that (3)(16) equals 48 and (3)(-5) equals -15, resulting in 48 + 15, which totals 63. The discussion emphasizes the importance of correctly applying the order of operations, specifically BIMDAS. Understanding exponents is crucial for solving such arithmetic expressions accurately.
Britt1
Messages
1
Reaction score
0
I need help figuring out what the little 2 next to an equation means this is what my problem looks like I have the answer but I can't figure out how it was found out. (3)(-4)2 - (3)(-5) so the 2 next to the 4 in parentheses is little.
 
Mathematics news on Phys.org
Britt said:
I need help figuring out what the little 2 next to an equation means this is what my problem looks like I have the answer but I can't figure out how it was found out. (3)(-4)2 - (3)(-5) so the 2 next to the 4 in parentheses is little.

Do you mean $(3)(-4)^{2}-(3)(-5)?$ If so, the small raised '2' is an exponent. That is a shorthand notation for multiplying something by itself a certain number of times.
 
My tip: BIMDAS!

-4 squared is 16 as I have shown. And then open the brackets. (3)(16) - 3 + 5

3x16 = 48

-3+5 = 2

48 + 2 = 50

But yeah, as Ackbach said, a little 2 is a squared sign meaning to multiply it by itself.
 
Beer soaked ramblings follow.
SDAlgebra said:
My tip: BIMDAS!

-4 squared is 16 as I have shown. And then open the brackets. (3)(16) - 3 + 5

3x16 = 48

-3+5 = 2

48 + 2 = 50

But yeah, as Ackbach said, a little 2 is a squared sign meaning to multiply it by itself.
8 year old thread revived.
 
And apparently revived to give the wrong answer!

The original problem was $(3)(-4)^2- (3)(-5)$.
The -5 is multiplied by -3, not subtracted from it.
3(16)+ 15= 48+ 15= 63, not 50.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top