MHB Evaluating limit by factorization

AI Thread Summary
The discussion focuses on evaluating the limit $\lim_{x\to5} \frac{x^3 + 3x^2 - 6x + 2}{x^3 + 3x^2 - 3x - 1}$ using factorization. Participants clarify that direct substitution is appropriate since the limit does not yield an indeterminate form. The confusion arises from a discrepancy in the expected answer, with one participant obtaining 9 through substitution. Further investigation reveals that the problem may have been misinterpreted, leading to a different limit evaluation at $x = -5$, which results in -11. Accurate problem interpretation is crucial for obtaining the correct limit value.
Joel Jacon
Messages
11
Reaction score
0
Can anyone tell me how to solve the following limit by factorization method
$\lim{{x}\to{5}} \frac{x^3 + 3x^2 - 6x + 2}{ x^3 + 3x^2 - 3x - 1}$?Please tell me how to factorize such big equation?
 
Last edited:
Mathematics news on Phys.org
Why do you want to factorize it?
The factorization method is useful when the limit is of an indeterminate form like $\frac{0}{0}$ or $\frac{\infty}{\infty}$. But this is not the case thus you can just plug in the value $x=5$.
 
But the answer given in my book is -11. While using direct substitution I get 9. How can you get -11
 
Last edited:
$$\lim_{x\to5}\frac{x^3+3x^2-6x+2}{x^3+3x^2-3x-1}=\frac{172}{184}=\frac{43}{46}$$$$\text{ }$$Are you sure you typed the problem correctly?
 
Yes, the question is correct. See the question 1 in the image
 

Attachments

  • uploadfromtaptalk1418687771929.jpg
    uploadfromtaptalk1418687771929.jpg
    133.2 KB · Views: 98
After saving the image, and rotating it so that it is not upside down, then straining my eyes to read the out of focus image, what I see is:

1.) $$\lim_{x\to5}\frac{2x^2+9x-5}{x+5}$$

Now, you can factor as follows (although it is not necessary):

$$\lim_{x\to5}\frac{(2x-1)(x+5)}{x+5}=\lim_{x\to5}2x-1=2(5)-1=9$$

Apparently what was meant, if an answer of $-11$ was given is:

$$\lim_{x\to-5}\frac{2x^2+9x-5}{x+5}=2(-5)-1=-11$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Back
Top