MHB Evaluating limit by factorization

Joel Jacon
Messages
11
Reaction score
0
Can anyone tell me how to solve the following limit by factorization method
$\lim{{x}\to{5}} \frac{x^3 + 3x^2 - 6x + 2}{ x^3 + 3x^2 - 3x - 1}$?Please tell me how to factorize such big equation?
 
Last edited:
Mathematics news on Phys.org
Why do you want to factorize it?
The factorization method is useful when the limit is of an indeterminate form like $\frac{0}{0}$ or $\frac{\infty}{\infty}$. But this is not the case thus you can just plug in the value $x=5$.
 
But the answer given in my book is -11. While using direct substitution I get 9. How can you get -11
 
Last edited:
$$\lim_{x\to5}\frac{x^3+3x^2-6x+2}{x^3+3x^2-3x-1}=\frac{172}{184}=\frac{43}{46}$$$$\text{ }$$Are you sure you typed the problem correctly?
 
Yes, the question is correct. See the question 1 in the image
 

Attachments

  • uploadfromtaptalk1418687771929.jpg
    uploadfromtaptalk1418687771929.jpg
    133.2 KB · Views: 95
After saving the image, and rotating it so that it is not upside down, then straining my eyes to read the out of focus image, what I see is:

1.) $$\lim_{x\to5}\frac{2x^2+9x-5}{x+5}$$

Now, you can factor as follows (although it is not necessary):

$$\lim_{x\to5}\frac{(2x-1)(x+5)}{x+5}=\lim_{x\to5}2x-1=2(5)-1=9$$

Apparently what was meant, if an answer of $-11$ was given is:

$$\lim_{x\to-5}\frac{2x^2+9x-5}{x+5}=2(-5)-1=-11$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top