Evaluating $M+N$ Given Triangle Congruency and Side Lengths

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary

Discussion Overview

The discussion revolves around evaluating the expression $M+N$ given the congruency of triangles and specific side lengths and angles. Participants explore the relationships between the sides and angles of the triangles, using trigonometric identities to derive values for $M$ and $N$.

Discussion Character

  • Mathematical reasoning, Technical explanation, Debate/contested

Main Points Raised

  • One participant presents a solution involving the equation $DG = 4\sin^2 10^\circ$ and seeks to express it in the form $$DG=\frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$.
  • Another participant agrees with the first regarding the expression for $DG$ and derives the equation $2M\sin10^\circ + 2N\sin^310^\circ = 1$ from it.
  • Using the triple angle formula for sine, one participant finds that $M=3$ and $N=-4$, leading to the conclusion that $M+N = -1$.
  • There is acknowledgment of the need for conditions on $M$ and $N$ to ensure a unique solution, with one participant admitting an oversight in this regard.
  • Another participant expresses gratitude for previous assistance that influenced their approach to the problem.

Areas of Agreement / Disagreement

Participants generally agree on the expression for $DG$ and the derived values for $M$ and $N$, but there is a recognition of the need for additional conditions to ensure uniqueness, indicating some unresolved aspects of the discussion.

Contextual Notes

Participants note the importance of defining conditions on $M$ and $N$ to avoid ambiguity in the solution, suggesting that the current discussion may not fully address all necessary constraints.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
View attachment 1354

Given that triangle $ABC$ is congruent to triangle $CDE$, and that $\angle A=\angle B=80^{\circ}$. Suppose that $AC=1$ and $$DG=\frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$.

Evaluate $M+N$.
.
 

Attachments

  • Challenge Problem.JPG
    Challenge Problem.JPG
    2.4 KB · Views: 112
Mathematics news on Phys.org
Re: Evaluate M+N

My solution:

We find that:

$$\angle C=180^{\circ}-2\cdot80^{\circ}=20^{\circ}$$

The Law of Cosines gives us:

$$\overline{CD}^2=2\left(1-\cos\left(20^{\circ} \right) \right)$$

Triangle $CDG$ is similar to the two congruent triangles, hence, we may state:

$$\frac{\overline{CD}}{\overline{DG}}= \frac{1}{\overline{CD}}\implies\overline{DG}= \overline{CD}^2= 2\left(1-\cos\left(20^{\circ} \right) \right)$$

Using a double angle identity for cosine, we may write:

$$\overline{DG}=2\left(1-\left(1-2\sin^2\left(10^{\circ} \right) \right) \right)=4\sin^2\left(10^{\circ} \right)$$

Thus, we see that we require:

$$M+N\sin^2\left(10^{\circ} \right)=\frac{1}{2}\csc^3\left(10^{\circ} \right)$$

With $M=0$, we then have $$M+N=\frac{1}{2}\csc^3\left(10^{\circ} \right)$$
 
Re: Evaluate M+N

[sp]I agree with Mark as far as the line $DG = 4\sin^210^\circ$. But I wanted to express that in the form $$DG=\frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$, with $M$ and $N$ numerical constants (not involving $\sin10^\circ$). So I want to find $M$ and $N$ such that $$4\sin^210^\circ = \frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$, or $2M\sin10^\circ + 2N\sin^310^\circ = 1$.

Remembering that $\sin3\theta = 3\sin\theta - 4\sin^3\theta$ and that $\sin30^\circ = 1/2$, I put $\theta = 10^\circ$, to get $\frac12 = 3\sin10^\circ - 4\sin^310^\circ$. Thus $6\sin10^\circ - 8\sin^310^\circ = 1$. Comparing that with the equation in the previous paragraph, you see that we can take $M=3$, $N=-4$ and hence $M+N = -1$.[/sp]
 
Re: Evaluate M+N

MarkFL said:
My solution:

We find that:

$$\angle C=180^{\circ}-2\cdot80^{\circ}=20^{\circ}$$

The Law of Cosines gives us:

$$\overline{CD}^2=2\left(1-\cos\left(20^{\circ} \right) \right)$$

Triangle $CDG$ is similar to the two congruent triangles, hence, we may state:

$$\frac{\overline{CD}}{\overline{DG}}= \frac{1}{\overline{CD}}\implies\overline{DG}= \overline{CD}^2= 2\left(1-\cos\left(20^{\circ} \right) \right)$$

Using a double angle identity for cosine, we may write:

$$\overline{DG}=2\left(1-\left(1-2\sin^2\left(10^{\circ} \right) \right) \right)=4\sin^2\left(10^{\circ} \right)$$

Thus, we see that we require:

$$M+N\sin^2\left(10^{\circ} \right)=\frac{1}{2}\csc^3\left(10^{\circ} \right)$$

With $M=0$, we then have $$M+N=\frac{1}{2}\csc^3\left(10^{\circ} \right)$$

Hi MarkFL,

Thanks for participating and since the problem doesn't mention any restriction on the variables $M$ and $N$, you got the full credit for your solution! Bravo!

But even though I am not the question setter, I should have noticed when I solved the problem that I should add the condition on both variables so that their sum is unique. I admit I overlooked this. I'm sorry...:o

Opalg said:
[sp]I agree with Mark as far as the line $DG = 4\sin^210^\circ$. But I wanted to express that in the form $$DG=\frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$, with $M$ and $N$ numerical constants (not involving $\sin10^\circ$). So I want to find $M$ and $N$ such that $$4\sin^210^\circ = \frac{2\sin 10^{\circ}}{M+N\sin^2 10^{\circ}}$$, or $2M\sin10^\circ + 2N\sin^310^\circ = 1$.

Remembering that $\sin3\theta = 3\sin\theta - 4\sin^3\theta$ and that $\sin30^\circ = 1/2$, I put $\theta = 10^\circ$, to get $\frac12 = 3\sin10^\circ - 4\sin^310^\circ$. Thus $6\sin10^\circ - 8\sin^310^\circ = 1$. Comparing that with the equation in the previous paragraph, you see that we can take $M=3$, $N=-4$ and hence $M+N = -1$.[/sp]

Hi Opalg,

Thanks for participating and I must tell you when I arrived at the step where I got $2Q\sin^3 10^{\circ}+2P \sin 10^{\circ}-1=0$, I immediately thought of the triple angle formula for the function of sine and you're recent help to me in one of the simultaneous equation threads was the inspiration to me...so, I wouldn't have solved this problem if not for what you have taught me! (Sun)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K