Ravi Mohan
- 195
- 21
What is the most general method of obtaining the event-horizon from the given black hole metric.
Let us consider Kerr black hole in Kerr coordinates given by
<br /> ds^2 = -\frac{\Delta-a^2sin^2\theta}{\Sigma}dv^2+2dvdr -\frac{2asin^2\theta(r^2+a^2-\Delta)}{\Sigma}dvd\chi-2asin^2\theta d\chi dr + \frac{(r^2+a^2)^2-\Delta a^2sin^2\theta}{\Sigma}sin^2\theta d\chi^2+\Sigma d\theta^2,<br />
where
<br /> \Sigma = r^2+a^2cos^2\theta\\<br /> \Delta = r^2 - 2Mr+a^2.<br />
How do we find the killing vector in a coordinate system?
Any hint or reference would be of great help.
Let us consider Kerr black hole in Kerr coordinates given by
<br /> ds^2 = -\frac{\Delta-a^2sin^2\theta}{\Sigma}dv^2+2dvdr -\frac{2asin^2\theta(r^2+a^2-\Delta)}{\Sigma}dvd\chi-2asin^2\theta d\chi dr + \frac{(r^2+a^2)^2-\Delta a^2sin^2\theta}{\Sigma}sin^2\theta d\chi^2+\Sigma d\theta^2,<br />
where
<br /> \Sigma = r^2+a^2cos^2\theta\\<br /> \Delta = r^2 - 2Mr+a^2.<br />
How do we find the killing vector in a coordinate system?
Any hint or reference would be of great help.