B Evidence for CP violation in the baryon sector

Chronos
Science Advisor
Gold Member
Messages
11,420
Reaction score
751
This paper; https: //arxiv.org/abs/1609.05216, Measurement of matter-antimatter differences in beauty baryon decays, provides the first evidence for CP violation in the baryon sector. This potentially explains a longstanding mystery - why the universe became dominated by matter while anti matter graciously stepped aside.
 
Physics news on Phys.org
Chronos said:
. This potentially explains a longstanding mystery - why the universe became dominated by matter while anti matter graciously stepped aside.

They don't say this in the paper. Which is good - it is well known that there is not enough asymmetry in the quark sector to explain the matter-antimatter asymmetry in the universe.
 
This is just standard model CP violation. Nice to see, but not surprising.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top