jostpuur
- 2,112
- 19
Can you give an example of a function f:X\times Y\to\mathbb{R}, where X,Y\subset\mathbb{R}, such that the integral
<br /> \int\limits_Y f(x,y) dy<br />
converges for all x\in X, the partial derivative
<br /> \partial_x f(x,y)<br />
exists for all (x,y)\in X\times Y, and the integral
<br /> \int\limits_Y \partial_x f(x,y) dy<br />
diverges at least for some x\in X?
<br /> \int\limits_Y f(x,y) dy<br />
converges for all x\in X, the partial derivative
<br /> \partial_x f(x,y)<br />
exists for all (x,y)\in X\times Y, and the integral
<br /> \int\limits_Y \partial_x f(x,y) dy<br />
diverges at least for some x\in X?