In response to UltrafastPED, whose latest third reply was emailed to me but for some reason was not posted:
Yes: a closed curve line integral in a conservative vector field will always yield a zero result. The interesting thing about the magnetostatic field produced solely by a steady current is that if the current is not enclosed within the chosen integration path, that portion of the field is conservative and hence has a zero line integral. If, on the other hand, any current traverses the area defined by the chosen closed path, then that portion of the field is non-conservative and the integral is no longer zero but becomes proportional to the enclosed current.
I don't really expect an exception to the Ampere-Maxwell circuital law, but we have seen Ampere's original circuital law eventually modified in three ways: once in a major way with Maxwell's inclusion of the changing electric field term, and twice in rather trivial ways with the usually implied inclusions of bound currents and polarization currents in the I or J terms, which, as far as I know, were not considered by Ampere in his original formulations. All the literature I have access to upholds this rigorously and extensively tested law of electromagnetics. My query was mainly directed at uncovering any relatively recent laboratory observations that may have called into question any aspect of the Ampere-Maxwell circuital law in its present form. I know that such questions may seem impudent bordering on ignorant, but the reason that this law and laws like it are so well established is that they have been so ruthlessly examined and tested over the years. Thanks again.