Expectation of random variable is constant?

AI Thread Summary
The discussion focuses on the conditions for a process to be wide sense stationary, particularly the requirement that the expected value E[X(t)] is constant. John questions the necessity of this condition, suggesting it seems obvious since any fixed random variable would yield a constant expectation. Steven counters by providing an example of stock price changes due to events like stock splits, illustrating that expectations can vary significantly over time. The conversation also touches on calculating the expectation of e^t, with Steven explaining that it involves the moment generating function and requires a random variable. The dialogue emphasizes the importance of understanding expectation in the context of stationary processes.
LM741
Messages
130
Reaction score
0
hi there.

currently looking at the two conditions that must be met for a process to be wide sense stationary.

The first constion is: E[X(t)] = constant

what exactly does this mean??isn't is obvious that any random variable (with fixed time) will always yield a constant expextation. I thought, for stationary prcesses, we want to try and prove that the random variable at DIFFERENT times yields the same expectation value (i.e. constant expactation).
The above condition seems to be stating the obvious...

Thanks
John
 
Physics news on Phys.org
Hi There,

Your sayin that, we are not in need of such a condition to satisfy the stationary concept, in actual fact we are in need of it especially when for example, let's says we are modeling the stock price historically it has been trading around $20 and then all of a sudden a stock split 1:4 occurs which then makes the stock trade at around $5 can you see the difference in the expectations before and after that particular event.

Regards Steven
 
does your example incorporate fixed time??

also - can you tell me what the expectatino value of e^t is??
i.e. - E[ e^t] = ? not sure how to calculate this?

thanks steven
 
just a follow up on my last post:

the reason why I'm not sure how to do this is because the expression does not contain a random variable , therefore how can i get a density function which i need in order to solve my expectation.
E[X] = integral(xfx)dx

where x is my random process and fx is the density function.

thanks
 
Hi there,

of course if your looking at historical figure's then the time must be limited and therefore in a fixed time, in terms of your expectation it is suppose to be E[e^xt] this is the moment generating function which is an alternative to find the expectation to the integral x*f(x)dx. And as you can see
m(t)=E[e^xt]=integral e^xt*f(x) dx does involve the randam variable. To find the expectation E[x]=m'(0).

Regards

Steven
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...

Similar threads

Replies
1
Views
2K
Replies
8
Views
2K
Replies
6
Views
2K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
2
Views
2K
Back
Top