Expected Value and Conditional Probability

retspool
Messages
35
Reaction score
0
So i a need to find E[XY], expected value of XY

But the process of finding E[X] includes a long and tideous integral which i am trying to avoid.
So computing E[XY] using its formula is also something i am trying to avoid.

But could i use this identity?

E[XY] = E[E(XY/Y)] = E[Y[E(X/Y)]]

Since I've already found E[X/Y] = Y, it gives me E[Y.Y] = E[Y^2].

Is the identity true?
 
Physics news on Phys.org
I deduced the identity from the given forumla

E[X] = E(E[XY/Y])
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top