darida
- 35
- 1
Ansatz metric of the 4 dimensional spacetime:
ds^2=a^2 g_{ij}dx^i dx^j + du^2 (1)
where:
Signature: - + + +
Metric g_{ij} \equiv g_{ij} (x^i) describes 3 dimensional AdS spacetime
i,j = 0,1,2 = 3 dimensional curved spacetime indices
a(u)= warped factor
u = x^D = x^3
D = 3 = number of spatial dimensional
Now I have to proof that
R_{ij} = [(\frac{a'}{a})' + 3 (\frac{a'}{a})^2 - \frac{\Lambda_3}{a^2}] a^2 g_{ij}
R_{33} = -3 [(\frac{a'}{a})' + (\frac{a'}{a})^2]
R = 6 [(\frac{a'}{a})' + 2 (\frac{a'}{a})^2] - \frac{3\Lambda_3}{a^2}
where
R_{ij} = the Ricci curvature of metric (1)
R = the Ricci scalar of metric (1)
a' = \frac{∂a}{∂u}
My steps to calculate R_{ij}:
Furthermore I can't find R_{33} and R
What are the right steps to find R_{ij}, R_{33}, R ?
ds^2=a^2 g_{ij}dx^i dx^j + du^2 (1)
where:
Signature: - + + +
Metric g_{ij} \equiv g_{ij} (x^i) describes 3 dimensional AdS spacetime
i,j = 0,1,2 = 3 dimensional curved spacetime indices
a(u)= warped factor
u = x^D = x^3
D = 3 = number of spatial dimensional
Now I have to proof that
R_{ij} = [(\frac{a'}{a})' + 3 (\frac{a'}{a})^2 - \frac{\Lambda_3}{a^2}] a^2 g_{ij}
R_{33} = -3 [(\frac{a'}{a})' + (\frac{a'}{a})^2]
R = 6 [(\frac{a'}{a})' + 2 (\frac{a'}{a})^2] - \frac{3\Lambda_3}{a^2}
where
R_{ij} = the Ricci curvature of metric (1)
R = the Ricci scalar of metric (1)
a' = \frac{∂a}{∂u}
My steps to calculate R_{ij}:
- calculating R_{\mu\nu}, where \mu,\nu = 0,1,2,3 = 4 dimensional curved spacetime indices
- finding that R_{\mu\nu} = ... R_{ij} (failed)
- Subtituting R_{\mu\nu} = ... R_{ij} to R_{\mu\nu} = \Lambda_D g_{\mu\nu} (failed)
Furthermore I can't find R_{33} and R
What are the right steps to find R_{ij}, R_{33}, R ?