I What makes Euler's Identity puzzling in complex number calculations?

  • I
  • Thread starter Thread starter Quarky nerd
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
Euler's Identity, expressed as eiΘ = cosΘ + i sinΘ, leads to puzzling results when manipulating complex numbers, particularly with fractional exponents. The discussion highlights that while e(2/3)πi simplifies to -1/2 + (√3/2)i, confusion arises when attempting to equate this with 1 through exponentiation. It emphasizes that the equality (z^n)^(1/n) does not necessarily equal z, illustrating the complexities of roots in complex numbers. The conversation also touches on the potential for extraneous solutions in these calculations, indicating that misinterpretations can lead to absurd conclusions. Understanding these nuances is crucial for accurate complex number calculations.
Quarky nerd
Messages
10
Reaction score
0
fig 1

Given:
5LgiS_EU09s8UP911Ko28KLQVMC-RVkNA8izH6Cyba7MX48oMODerFJoh7hyvl07rRE5lCGrbEqVOLOHWUGlyDzOYr7ZuhCT.png


e= cosΘ + i sinΘ (radians)

eπi=-1

Deduced

e2πi=(-1)2

e2πi=1

e(2/3)πi=11/3

e(2/3)iπ=1

e(2/3)iπ=cos(2i/3)+i sin(2i/3)

e(2/3)iπ=-1/2+i(3/2)

-1/2+i(31/2/2)=1

where n is greater than or equal to 1 or n=a/b where a is greater than or equal to 1 and b is odd
726a0xR7EIDHt-17t443594r2qWP8KCc98Da6ood-H5sIaZPKhu4-NSENIPLdcu4NPgQaZDCxbdChyb59mEmk3GAlWSpgBYz.png


1n=1



(-1/2+i(3/2))n=1However this is absurd and I
have no idea what's wrong
(sorry about the formating it was better in docs)
 

Attachments

  • 5LgiS_EU09s8UP911Ko28KLQVMC-RVkNA8izH6Cyba7MX48oMODerFJoh7hyvl07rRE5lCGrbEqVOLOHWUGlyDzOYr7ZuhCT.png
    5LgiS_EU09s8UP911Ko28KLQVMC-RVkNA8izH6Cyba7MX48oMODerFJoh7hyvl07rRE5lCGrbEqVOLOHWUGlyDzOYr7ZuhCT.png
    1.5 KB · Views: 1,121
  • 726a0xR7EIDHt-17t443594r2qWP8KCc98Da6ood-H5sIaZPKhu4-NSENIPLdcu4NPgQaZDCxbdChyb59mEmk3GAlWSpgBYz.png
    726a0xR7EIDHt-17t443594r2qWP8KCc98Da6ood-H5sIaZPKhu4-NSENIPLdcu4NPgQaZDCxbdChyb59mEmk3GAlWSpgBYz.png
    10.7 KB · Views: 1,161
Last edited:
Mathematics news on Phys.org
As soon as you put a denominator into the exponent, you run into trouble.
For example, ##1^1=1##. But does ##1^{1/2}=1##? It could equal -1.

Also, Look at your third "deduced" line.
Where did it come from? ##e^{(2/3)πi}=31## ?

In any case, ##e^{(2/3)πi)} = -1/2 + (\sqrt{3}/2)i##
 
Quarky nerd said:
fig 1

Given:View attachment 238257

e= cosΘ + i sinΘ (radians)

eπi=-1

Deduced

e2πi=(-1)2

e2πi=1

e(2/3)πi=31

e(2/3)iπ=1

e(2/3)iπ=cos(2i/3)+i sin(2i/3)

e(2/3)iπ=-1/2+i(3/2)

-1/2+i(31/2/2)=1

where n is greater than or equal to 1 or n=a/b where a is greater than or equal to 1 and b is oddView attachment 238258

1n=1



(-1/2+i(3/2))n=1However this is absurd and I
have no idea what's wrong
(sorry about the formating it was better in docs)

What you have really shown is that:

##(e^{2\pi i/3})^3 = 1##

In other words:

##(\cos(2\pi /3) + i \sin(2\pi /3))^3 = 1##

And, in fact, there are three complex numbers ##z##, where ##z^3 = 1##.

But, this doesn't mean that in this case ##z = 1^{1/3} = 1##.

In the same way that ##-1 \ne \sqrt{1} = 1##, although we do have ##(-1)^2 = 1##

And, in general, we have:

##(z^n)^{1/n} \ne z##

Where ##\ne## here means is not necessarily equal to.
 
why does this happen?
 
.Scott said:
As soon as you put a denominator into the exponent, you run into trouble.
For example, ##1^1=1##. But does ##1^{1/2}=1##? It could equal -1.

Also, Look at your third "deduced" line.
Where did it come from? ##e^{(2/3)πi}=31## ?

In any case, ##e^{(2/3)πi)} = -1/2 + (\sqrt{3}/2)i##
sorry that was meant to be one root three
 
Quarky nerd said:
why does this happen?

Why does what happen?
 
might this be the same reason that extraneous solutions exist?
 
Quarky nerd said:
might this be the same reason that extraneous solutions exist?

Extraneous solutions to what?
 
Back
Top