Are There Odd Solutions for x and y in the Equation 15x² + y² = 2²⁰⁰⁰?

  • Thread starter Thread starter Anzas
  • Start date Start date
  • Tags Tags
    Numbers
AI Thread Summary
The discussion centers on the diophantine equation 15x² + y² = 2²⁰⁰⁰, exploring whether there are odd integer solutions for x and y. It is established that the derived equations for a and b impose strict conditions on the integer t, leading to the conclusion that t = -1 is the only viable option, resulting in a = 0, which cannot yield odd solutions. The conversation also highlights that if a solution exists, y must conform to specific forms related to modular arithmetic. Ultimately, the question of whether any odd solutions exist remains unresolved. The complexity of the problem suggests further exploration is necessary.
Anzas
Messages
87
Reaction score
0
are there two odd numbers x,y
that are the solutions of the equation 15x^2+y^2=2^{2000}
 
Mathematics news on Phys.org
For various reasons, the diophantine equation 15a + b = 2^2000 has the solutions

a = 2^2000 + 2^2000 * t,
b = -14*2^2000 - 15*2^2000 * t,

where t is some integer. Now, if x^2 = a and y^2 = b (with x, y natural), then it's necessary (but obviously not sufficient) that both a and b be positive. This places some severe restrictions on t, in fact, if you try to solve the system

a >= 0
b >= 0

you'll find that t = -1 is the only possibility, but then a = 0, which isn't odd.
 
For various reasons, the diophantine equation 15a + b = 2^2000 has the solutions

a = 2^2000 + 2^2000 * t,
b = -14*2^2000 - 15*2^2000 * t,

I'd be curious to know those reasons... :confused:
 
Damn it, it should be a = 2^2000 + t, b = -14*2^2000 - 15t... I messed up trying to distribute a multiplication over a parenthesis. This breaks the "solution". :(
 
so i suppose the question remains open? :confused:
 
Are you sure it has any solutions?

I've messed about with this and found if there is a solution then y must be one of the 4 forms:

y = 1 + 30c \quad \text{or} \quad y = 11 + 30c \quad \text{or} \quad y = 19 + 30c \quad \text{or} \quad y = 29 + 30c \quad c \in \mathbb{Z}
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top