Exploring the mysteries of two dust-free quasars: J0005-0006 and J0303-0019.

  • Thread starter Thread starter wolram
  • Start date Start date
  • Tags Tags
    Black holes Holes
wolram
Gold Member
Dearly Missed
Messages
4,410
Reaction score
555
Do these PBHs exist and would they lead to quantum gravity?

http://arxiv.org/abs/astro-ph/0504034

Recent developments in the study of primordial black holes (PBHs) will be reviewed, with particular emphasis on their formation and evaporation. PBHs could provide a unique probe of the early Universe, gravitational collapse, high energy physics and quantum gravity. Indeed their study may place interesting constraints on the physics relevant to these areas even if they never formed. In the "early Universe" context, particularly useful constraints can be placed on inflationary scenarios, especially if evaporating PBHs leave stable Planck-mass relicts. In the "gravitational collapse" context, the existence of PBHs could provide a unique test of the sort of critical phenomena discovered in recent numerical calculations. In the "high energy physics" context, information may come from gamma-ray bursts (if a subset of these are generated by PBH explosions) or from cosmic rays (if some of these derive from evaporating PBHs). In the "quantum gravity" context, the formation and evaporation of small black holes could lead to observable
signatures in cosmic ray events and accelerator experiments, providing there are extra dimensions and providing the quantum gravity scale is around a TeV.

Aha just discovered two dust-free quasars, called J0005-0006 and J0303-0019
 
Last edited:
  • Like
Likes Justice Hunter
Physics news on Phys.org
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top