MHB Exponential Growth & Decay Question

ISITIEIW
Messages
17
Reaction score
0
Suppose that there is initially x(not) grams of Kool-Aid powder in a glass of water. After 1 minute there are 3 grams remaining and after 3 minutes there is only 1 gram remaining. Find x(not) and the amount of Kool-Aid powder remaining after 5 minutes…

So, i set up 2 equations…

3=x(not)e^-k(1)

and 1=x(not)e^-k(3)

I know it is decaying ,but i don't know what i have to do with these equations that i made to find the value of k.

Thanks !
 
Mathematics news on Phys.org
Since there is no actual calculus involve in solving this problem, I am going to move the topic to our Pre-Calculus sub-forum.

You're off to a good start:

$$x_0e^{-k}=3$$

$$x_0e^{-3k}=1$$

I think what I would do next is solve both equations for $x_0$ and equate:

$$x_0=3e^{k}=e^{3k}$$

Next try dividing through by $e^k$ and then convert from exponential to logarithmic form.
 
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)
 
ISITIEIW said:
Thanks!
I got k to be 0.549306144
and got a x(not) value of 5.196152423

I got it from here !
Thanks :)

You're welcome! :D

I would get in the habit of obtaining/writing exact values rather than decimal approximations. I find:

$$k=\ln\left(\sqrt{3} \right)$$

$$x_0=3\sqrt{3}$$

I realize it is possible that you found these values and simply chose to write the approximations. (Angel)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top