MHB Expressing a polynomial P(x)=(x−a)^2(x−b)^2+1 by two other polynomials

Click For Summary
The polynomial P(x) = (x-a)²(x-b)² + 1, where a and b are distinct integers, cannot be factored into two nonconstant polynomials with integer coefficients. The discussion emphasizes the need for a proof to establish this fact. Participants share different approaches to the problem, highlighting the complexity of polynomial factorization. The conversation includes expressions of appreciation for contributions and alternative solutions. Ultimately, the consensus is that the polynomial's structure prevents such a factorization.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.
 
Mathematics news on Phys.org
lfdahl said:
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.

by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
 
kaliprasad said:
by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
Very nice, kaliprasad! Thankyou for your participation!The suggested solution differs a bit from kaliprasads, so I will post it here:

Suppose $P(x)$ is a product of two polynomials. Then these polynomials are monic and both have degree $2$, since the coefficient of $P(x)$ at $x^4$ is $1$, and $P(x) > 0$ has no real roots:

\[P(x) = (x^2+px+q)(x^2+rx+s)\]

At $x=a$ and $x=b$, $P(x)=1$, therefore: $x^2+px+q=x^2+rx+s = \pm 1$. Thus $px-rx+q-s$ has two different roots, $a$ and $b$, and therefore is identically zero: $p=r$ and $q=s$.

Then, we have: $P(x) = (x-a)^2(x-b)^2 + 1=(x^2+px+q)^2$.

Since, the only two squares, that differ by $1$ are $0^2$ and $1^2$, $P(x) = 1$. A contradiction.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K