Expressing a polynomial P(x)=(x−a)^2(x−b)^2+1 by two other polynomials

Click For Summary
SUMMARY

The polynomial \( P(x) = (x-a)^2(x-b)^2 + 1 \) cannot be expressed as a product of two nonconstant polynomials with integer coefficients, where \( a \) and \( b \) are distinct integers. This conclusion is supported by the properties of polynomial factorization and the nature of integer coefficients. The discussion highlights the uniqueness of the polynomial's structure, emphasizing that any attempt to factor it leads to contradictions in the integer domain.

PREREQUISITES
  • Understanding of polynomial factorization
  • Familiarity with integer coefficients in polynomials
  • Knowledge of algebraic identities and properties
  • Basic concepts of number theory
NEXT STEPS
  • Study polynomial irreducibility criteria
  • Explore the implications of unique factorization in integers
  • Learn about algebraic structures related to polynomial rings
  • Investigate examples of polynomials that cannot be factored over integers
USEFUL FOR

Mathematicians, algebra students, and anyone interested in polynomial theory and factorization challenges.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.
 
Mathematics news on Phys.org
lfdahl said:
Let $a$ and $b$ be two integer numbers, $a \ne b$. Prove, that the polynomial:

$$P(x) = (x-a)^2(x-b)^2 + 1$$

cannot be expressed as a product of two nonconstant polynomials with integer coefficients.

by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
 
kaliprasad said:
by letting t = x - a and hence x-b = t + a -b = t -c where c = b- a we get

$t^2(t-c)^2 + 1$ another polinomial in t

above has minimum value of 1 so this does not have linear factor as no real zero.

so we need to check if it has 2 quadratoc factors

1 can be expressed as 1 * 1 or - 1 * - 1 so we have 2 choices

$(t^2+nt +1)(t^2-nt + 1)$ n and -n because there is no term in t

this gives that there is no term in $t^3$ which is contradiction

similarly $(t^2+nt -1)(t^2-nt - 1)$ is ruled out

hence it cannot be factored
Very nice, kaliprasad! Thankyou for your participation!The suggested solution differs a bit from kaliprasads, so I will post it here:

Suppose $P(x)$ is a product of two polynomials. Then these polynomials are monic and both have degree $2$, since the coefficient of $P(x)$ at $x^4$ is $1$, and $P(x) > 0$ has no real roots:

\[P(x) = (x^2+px+q)(x^2+rx+s)\]

At $x=a$ and $x=b$, $P(x)=1$, therefore: $x^2+px+q=x^2+rx+s = \pm 1$. Thus $px-rx+q-s$ has two different roots, $a$ and $b$, and therefore is identically zero: $p=r$ and $q=s$.

Then, we have: $P(x) = (x-a)^2(x-b)^2 + 1=(x^2+px+q)^2$.

Since, the only two squares, that differ by $1$ are $0^2$ and $1^2$, $P(x) = 1$. A contradiction.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K