Failed rocket problem (momentum conservation, Kleppner 4-4)

AI Thread Summary
The discussion centers on the complexities of a rocket problem related to momentum conservation. Participants highlight that the initial movement of the rocket is not free fall, complicating the trajectory analysis. It is noted that if the rocket maintains powered flight until the top of its trajectory, the horizontal velocity before an explosion remains unknown, leading to unpredictable landing distances. The consensus is that assuming the rocket burns out quickly and follows a parabolic free fall is necessary for a consistent solution. This approach allows for a clearer understanding of the rocket's landing position.
Michael Korobov
Messages
6
Reaction score
0
Homework Statement
An instrument-carrying rocket accidentally explodes at the top of its trajectory. The horizontal distance between the launch point and the point of explosion is L. The rocket breaks into two pieces that fly apart horizontally. The larger piece has three times the mass of the smaller piece. To the surprise of the scientist in charge, the smaller piece returns to Earth at the launching station. How far away does the larger piece land? Neglect air resistance and effects due to the Earth’s curvature.
Relevant Equations
Momentum conserved
Kinematics equations
Hi,
Can anyone hint me if there is issue in the problem statement?
Consistent answer can be obtained if one presumes that the trajectory of center mass is parabolic.
Assuming this, the CM will land at distance L right to the axis of symmetry of parabola.
But the problem tells about a rocket, therefore first part of rocket movement is not free fall and thus the horizontal distance of falling after the top of trajectory is not necessarily L.
Is it deduction correct?
 
Physics news on Phys.org
Michael Korobov said:
But the problem tells about a rocket, therefore first part of rocket movement is not free fall and thus the horizontal distance of falling after the top of trajectory is not necessarily L.
Is it deduction correct?
Yes, it is not necessarily L. That's why the scientist in charge was surprised when it landed there.
 
  • Haha
Likes Michael Korobov
Michael Korobov said:
But the problem tells about a rocket, therefore first part of rocket movement is not free fall and thus the horizontal distance of falling after the top of trajectory is not necessarily L.
Is it deduction correct?
If we assume powered flight all the way to the top of the trajectory then we have, in principle, no way to know the horizontal velocity of the rocket just prior to the explosion.

It is possible, for instance, that the rocket reverses course, that the "explosion" is a mere fizzle and that both rocket pieces land together at the launch site.

Accordingly, one assumes, as you did in your solution, that the rocket burns out almost immediately after launch and then carries on in a parabolic free fall trajectory. Otherwise, there is no way to a solution.
 
jbriggs444 said:
If we assume powered flight all the way to the top of the trajectory then we have, in principle, no way to know the horizontal velocity of the rocket just prior to the explosion.

It is possible, for instance, that the rocket reverses course, that the "explosion" is a mere fizzle and that both rocket pieces land together at the launch site.

Accordingly, one assumes, as you did in your solution, that the rocket burns out almost immediately after launch and then carries on in a parabolic free fall trajectory. Otherwise, there is no way to a solution.
Indeed, this was the only way to get consistent solution.
Thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top