- 20,626
- 27,753
- TL;DR Summary
- Why it took 350 years and a genius to prove Fermat's Last Theorem.
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation
$$
a^n+b^n=c^n
$$
has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy
"Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet."
"It is not possible, however, to decompose a cube into two cubes, or a biquadrate into two biquadrates, and in general, to decompose a power higher than the second into two powers with the same exponent: I have discovered a truly wonderful proof for this, but this margin is too narrow to grasp here."
which has been found after his death. Everybody understands the problem statement, however, it turned out to be extraordinarily difficult to solve, and nobody today assumes that Fermat had actually found a proof for the general case. For example,
$$
6^3+8^3=9^3-1,
$$
is almost a solution for the cubic case. Imagine how many natural numbers we have to rule out as possible solutions. Numbers we cannot even write down in a lifetime. Such considerations aren't even evidence in number theory since exceptions can always occur, but it shows the principal difficulty of any proof of negative results. Non-existence is hard to prove.
Both aspects of the story - the simplicity of the statement and Fermat's provocative remark - were a blessing as well as a curse. A blessing because, during the 350 years it took before Andrew Wiles and Richard Taylor succeeded in providing a complete proof in 1994, extraordinary developments in mathematics were initiated in the effort to prove the statement, especially in number theory, abstract algebra, class field theory, and the theory of elliptic curves. Its curse, however, lies in the fact that to this day, even after the more than 100-page solution to the problem, full of elaborate mathematics, laypeople still attempt to prove the theorem using simple means. It's safe to say that such attempts are doomed from the start. This article aims to shed light on why this is the case.
Continue reading ...
$$
a^n+b^n=c^n
$$
has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy
"Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duas ejusdem nominis fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet."
"It is not possible, however, to decompose a cube into two cubes, or a biquadrate into two biquadrates, and in general, to decompose a power higher than the second into two powers with the same exponent: I have discovered a truly wonderful proof for this, but this margin is too narrow to grasp here."
which has been found after his death. Everybody understands the problem statement, however, it turned out to be extraordinarily difficult to solve, and nobody today assumes that Fermat had actually found a proof for the general case. For example,
$$
6^3+8^3=9^3-1,
$$
is almost a solution for the cubic case. Imagine how many natural numbers we have to rule out as possible solutions. Numbers we cannot even write down in a lifetime. Such considerations aren't even evidence in number theory since exceptions can always occur, but it shows the principal difficulty of any proof of negative results. Non-existence is hard to prove.
Both aspects of the story - the simplicity of the statement and Fermat's provocative remark - were a blessing as well as a curse. A blessing because, during the 350 years it took before Andrew Wiles and Richard Taylor succeeded in providing a complete proof in 1994, extraordinary developments in mathematics were initiated in the effort to prove the statement, especially in number theory, abstract algebra, class field theory, and the theory of elliptic curves. Its curse, however, lies in the fact that to this day, even after the more than 100-page solution to the problem, full of elaborate mathematics, laypeople still attempt to prove the theorem using simple means. It's safe to say that such attempts are doomed from the start. This article aims to shed light on why this is the case.
Continue reading ...