- #1
Physicslad78
- 47
- 0
I have a question that is puzzling me as always...The Fermi-Dirac distribution function is (at T=0):
f[tex]\epsilon[/tex]=[tex]\frac{1}{e^{\beta(\epsilon-\epsilon_{F})}+1}[/tex] and we know that we can subsitute f[tex]\epsilon[/tex] by 1 for [tex]\epsilon[/tex]< [tex]\epsilon_{F}[/tex] and 0 otherwise. However what is f(-[tex]\epsilon[/tex])? The answer is easy when [tex]\epsilon_{F}[/tex]=0 but what if [tex]\epsilon_{F}[/tex] is not zero. what would be ff(-[tex]\epsilon[/tex])? for [tex]\epsilon[/tex]< [tex]\epsilon_{F}[/tex]?
Thanks
f[tex]\epsilon[/tex]=[tex]\frac{1}{e^{\beta(\epsilon-\epsilon_{F})}+1}[/tex] and we know that we can subsitute f[tex]\epsilon[/tex] by 1 for [tex]\epsilon[/tex]< [tex]\epsilon_{F}[/tex] and 0 otherwise. However what is f(-[tex]\epsilon[/tex])? The answer is easy when [tex]\epsilon_{F}[/tex]=0 but what if [tex]\epsilon_{F}[/tex] is not zero. what would be ff(-[tex]\epsilon[/tex])? for [tex]\epsilon[/tex]< [tex]\epsilon_{F}[/tex]?
Thanks