Fermi level in n-type or p-type semiconductors

Cathyzhang
Messages
2
Reaction score
0
Hi, everyone. I'm learning basic theories about semiconductors but can't quite understand the concept of Fermi level. is this just a imaginary energy level or true existence? and why Fermi level is close to the conduction band of n-type semiconductor and valence band of p-type semiconductor? the last question is, if applying a potential on the semiconductor materials, the Fermi level will shift up and down with the increase or decrease of the voltage-why?
thanks _Cathy:smile:
 
Physics news on Phys.org
is this just a imaginary energy level or true existence?
It does not have to be a possible energy level for electrons.
"imaginary" versus "true" is not physics.

and why Fermi level is close to the conduction band of n-type semiconductor and valence band of p-type semiconductor?
I think this is easier to see if you imagine an additional energy level in the bandgap. Where would it have to be to be 50% filled?
For n-type semiconductors, close to the conduction band, as you have additional electrons there.
For p-type semiconductors, close to the valence band, as you have additional holes there.

the last question is, if applying a potential on the semiconductor materials, the Fermi level will shift up and down with the increase or decrease of the voltage-why?
A voltage changes electron energies.
 
mfb said:
It does not have to be a possible energy level for electrons.
"imaginary" versus "true" is not physics.

I think this is easier to see if you imagine an additional energy level in the bandgap. Where would it have to be to be 50% filled?
For n-type semiconductors, close to the conduction band, as you have additional electrons there.
For p-type semiconductors, close to the valence band, as you have additional holes there.

A voltage changes electron energies.

Thanks! that's help :)
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...

Similar threads

Replies
5
Views
2K
Replies
5
Views
5K
Replies
2
Views
4K
Replies
12
Views
6K
Replies
3
Views
9K
Replies
4
Views
2K
Replies
2
Views
2K
Back
Top