Fermion Current Commutators in 2 dimensions

EoinBrennan
Messages
12
Reaction score
0

Homework Statement



Given the current: J^{\epsilon}_{0} (t,x) = \overline{\psi_{L}}(t,x + \epsilon) \gamma^{0} \psi_{L}(t,x - \epsilon) = \psi_{L}^{\dagger} (x + \epsilon) \psi_{L}(x - \epsilon) with \psi_{L} = \frac{1}{2} (1 - \gamma^{5}) \psi_{D}.

Use the canonical equal time commutation relations for fermions to compute the equal time commutator:
[J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)].

Homework Equations



Canonical equal time commutation relations:

\{\psi_{a} (x), \psi^{\dagger}_{b} (y)\} = i \delta^{3} (x - y) \delta_{a b}

\{\psi_{a} (x), \psi_{b} (y)\} = \{\psi^{\dagger}_{a} (x), \psi^{\dagger}_{b} (y)\} = 0

The Attempt at a Solution



So [J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] = \psi^{\dagger}_{L} (x + \epsilon) \psi_{L} (x - \epsilon) \psi^{\dagger}_{L} (y + \epsilon) \psi_{L} (y - \epsilon) - \psi^{\dagger}_{L} (y + \epsilon) \psi_{L} (y - \epsilon) \psi^{\dagger}_{L} (x + \epsilon) \psi_{L} (x - \epsilon)

From here I'm not sure what path to take.

\{ \psi_{L} (x - \epsilon), \psi^{\dagger}_{L} (y + \epsilon) \} = i \delta^{3} (x - y - 2 \epsilon) \\ \Rightarrow \psi_{L} (x - \epsilon) \psi^{\dagger}_{L} ( y + \epsilon) = i \delta^{3} (x - y - 2 \epsilon) - \psi^{\dagger}_{L} ( y + \epsilon) \psi_{L} (x - \epsilon)

Subbing this into the commutation relation gives

i.e. [J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] = \psi^{\dagger}_{L} (x + \epsilon) ( i \delta^{3} (x - y - 2 \epsilon) - \psi^{\dagger}_{L} ( y + \epsilon) \psi_{L} (x - \epsilon)) \psi_{L} (y - \epsilon) - \psi^{\dagger}_{L} (y + \epsilon) ( i \delta^{3} (y - x + 2 \epsilon) - \psi^{\dagger}_{L} ( x + \epsilon) \psi_{L} (y - \epsilon)) \psi_{L} (x - \epsilon)

With \psi^{\dagger}_{L} (x + \epsilon) \psi^{\dagger}_{L} (y + \epsilon) = \frac{1}{2} \{ \psi^{\dagger}_{L} (x + \epsilon), \psi^{\dagger}_{L} (y + \epsilon) \} = 0, etc.

So now I have

[J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] = \psi^{\dagger}_{L} (x + \epsilon) ( i \delta^{3} (x - y - 2 \epsilon)) \psi_{L} (y - \epsilon) - \psi^{\dagger}_{L} (y + \epsilon) ( i \delta^{3} (y - x + 2 \epsilon)) \psi_{L} (x - \epsilon) \\ = i \delta^{3} (x - y - 2 \epsilon) \psi^{\dagger}_{L} (x + \epsilon) \psi_{L} (y - \epsilon) - i \delta^{3} (y - x + 2 \epsilon) \psi^{\dagger}_{L} (y + \epsilon) \psi_{L} (x - \epsilon)

Is this all correct?

Homework Statement



I am then asked to evaluate \langle 0 \vert [J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] \vert 0 \rangle in the massless case, and the limit as \epsilon \rightarrow 0.

Homework Equations



I am given that \langle 0 \vert \psi^{\dagger}_{L} (t,x) \psi_{L} (t,y) \vert 0 \rangle = \frac{1}{x - y}.

The Attempt at a Solution



So \langle 0 \vert [J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] \vert 0 \rangle = \langle 0 \vert i \delta^{3} (x - y - 2 \epsilon) \psi^{\dagger}_{L} (x + \epsilon) \psi_{L} (y - \epsilon) - i \delta^{3} (y - x + 2 \epsilon) \psi^{\dagger}_{L} (y + \epsilon) \psi_{L} (x - \epsilon) \vert 0 \rangle \\ = \langle 0 \vert i \delta^{3} (x - y - 2 \epsilon) \psi^{\dagger}_{L} (x + \epsilon) \psi_{L} (y - \epsilon) \vert \rangle - \langle 0 \vert i \delta^{3} (y - x + 2 \epsilon) \psi^{\dagger}_{L} (y + \epsilon) \psi_{L} (x - \epsilon) \vert 0 \rangle

I'm not quite sure how operators like \langle 0 \vert act on the \delta terms.

But it seems like the answer will be:

\langle 0 \vert [J^{\epsilon}_{0} (t,x), J^{\epsilon}_{0} (t, y)] \vert 0 \rangle = i \delta^{3} (x - y - 2 \epsilon) \frac{1}{x - y -2 \epsilon} - i \delta^{3} (y - x + 2 \epsilon) \frac{1}{y - x + 2 \epsilon}

As \epsilon \rightarrow 0 we get: \langle 0 \vert [J^{0}_{0} (t,x), J^{0}_{0} (t, y)] \vert 0 \rangle = i \delta^{3} (x - y) \frac{1}{x - y} - i \delta^{3} (y - x) \frac{1}{y - x}.

Is this = 0?

Any feedback would be greatly appreciated. I have very little support from my lecturer and I'm feeling a bit overwhelmed by Quantum Field Theory.
 
Physics news on Phys.org
Bumping this as it is the exact question I posted yesterday.
 
Bump
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top