DeltaForce said:
Coming back to the basic scenario of two electrons shot at each other and bounce off. That is what the most basic Feynman diagram represents I think.
There are an infinite number of Feynman diagrams for this case. The simplest one has two electron lines coming in, two electron lines going out, and a single internal photon line between them. But there are more complicated diagrams that have more internal lines. (Actually, even that's not the simplest possible diagram--see below.)
Note that even the simplest diagram is not correctly described as "two electrons shot at each other and bounce off". The electrons don't interact with each other directly. They interact by exchanging a photon (a virtual photon).
DeltaForce said:
In quantum physics, those electric field supposedly are made of individual discrete photons (i think).
Made of virtual photons, which we never directly measure.
Also, this description is based on the description of QED in terms of Feynman diagrams, which actually are only one possible way of viewing QED. This way, which is more general than just QED (it can be applied to any quantum field theory) is called "perturbation theory", because each of the Feynman diagrams containing internal lines can be viewed as a perturbation, or correction, to the most basic diagram that just has the external lines with nothing happening in between.
For example, remember that I said in an earlier post that "light taking different routes" refers to the simplest possible Feynman diagram for a single photon, where it just goes in and comes out and nothing happens in between. All of the more complicated diagrams with one photon line going in and one photon line coming out are perturbations to this.
For the case of two electrons--i.e., two electron lines going in and two electron lines coming out--the simplest possible Feynman diagram is actually one with just two electron lines--two going in and two coming out--with nothing happening in between. All of the other diagrams, including the one with just a single internal photon line between the two electrons, are perturbations to that. So basically QED on this perturbation theory view is just adding up all the possible perturbations to nothing happening at all!
DeltaForce said:
In the 2nd chapter, it talks about light and how it is most likely to take the path of least time required to travel
This is actually another way to view the pure photon part of QED; the "path of least time" described in that chapter is the same as the "path of greatest amplitude" when you calculate the integral over all possible paths for the simplest one-photon Feynman diagram.
DeltaForce said:
If any of that information relevant to the electron situation I mentioned above?
Not really, because, as I said above, when we are talking about electrons repelling each other, the photons they are exchanging are virtual photons; whereas when we are talking about light propagation and the various phenomena described in QED chapter 2, we are talking about real photons that we actually observe (more precisely, we observe the light propagation phenomena being described).