MHB Find $a+b+c$ for Integer $a,b,c$ Given $a+b=2004$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The problem involves finding the sum \( a + b + c \) for integers \( a, b, c \) given the equations \( a + b = 2004 \) and the relationships \( \frac{2a-b}{c} = \frac{2b+c}{a} = \frac{-2a-c}{b} \). By substituting \( k \) into the equations, it is determined that \( k = -1 \), leading to the conclusion that \( a = 3b \). Given \( a + b = 2004 \), solving for \( b \) yields \( b = 501 \) and consequently \( a + b + c = -501 \). The final result is \( a + b + c = -501 \).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For the integers $a, b, c$, we have $\dfrac{2a-b}{c}=\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}$.

If $a+b=2004$, find $a+b+c$.
 
Mathematics news on Phys.org
Re: Find a+b+c

anemone said:
For the integers $a, b, c$, we have $\dfrac{2a-b}{c}=\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}$.

If $a+b=2004$, find $a+b+c$.

We have
(2a-b)/c = (-2a-c)/b
As (a/b= c/d = (a+c)/(b+d))
Have both = (2a-b – 2a –c)/(b+c) = -1
Furher from (2b+c)/a = (-2a –c) we get both =2 (b-a)/(b+a) = - 1
So
2(b-a) = - (b+a) = - 2004
Or b – a = - 1002
So a = 1503, b = 501
Now 2b+c = -a or c = - (2b-a) = - 2505
So a + b+c = - 501
(ratio a:b:c = 3:1:-5 and sum = -b)
 
Re: Find a+b+c

Hi kaliprasad, thank for participating and I particularly like the following "trick" that you used in your method to solve the problem!:cool:

If $ad=bc$, then

i$\dfrac{a+c}{b+d}= \dfrac{\frac{bc}{d}+c}{b+d}=\dfrac{\frac{c}{d}(b+d)}{b+d}=\dfrac{c}{d}$

$\;\;\;\;\;\;\;\;\;\;\overset{or}= \dfrac{a+\frac{ad}{b}}{b+d}=\dfrac{\frac{a}{b}(b+d)}{b+d}=\dfrac{a}{b}$.

My solution:
From the given equation $\dfrac{2a-b}{c}=\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}$, we have:

[TABLE="class: grid, width: 500"]
[TR]
[TD]$\dfrac{2a-b}{c}=\dfrac{2b+c}{a}$[/TD]
[TD]$\dfrac{2a-b}{c}=\dfrac{-2a-c}{b}$[/TD]
[TD]$\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}$[/TD]
[/TR]
[TR]
[TD]$2a^2-ab=2bc+c^2$[/TD]
[TD]$(b+c)(2a-b+c)=0$[/TD]
[TD][/TD]
[/TR]
[TR]
[TD][/TD]
[TD]But notice that $b+c\ne 0$ because if $b+c=0$,

$2a^2-ab=2bc+c^2$ becomes

$2a^2-ac=-2c^2+c^2$

$2a^2-ac+c^2=0$

$2a^2-ac+c^2=0$

$2(a-\frac{c}{4})+\frac{7c^2}{8}\ne 0$ for all integers $a, c$.

Hence, $2a-b+c=0$[/TD]
[TD]$\dfrac{2b+c}{a}=\dfrac{-(2a+c)}{b}$

$\dfrac{2b+c}{a}=\dfrac{-b}{b}$

$2b+c=-a$

$a+2b+c=0$[/TD]
[/TR]
[/TABLE]

Now, solve the equations $2a-b+c=0$ and $a+2b+c=0$ by eliminating the variable $c$ for a and b, we get $a=3b$ and from $a+b=2004$, we obtain $a=1503, b=501, c=-2505$ and therefore $a+b+c=-501$.
 
Re: Find a+b+c

anemone said:
For the integers $a, b, c$, we have $\dfrac{2a-b}{c}=\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}$.

If $a+b=2004$, find $a+b+c$.
let :
$\dfrac{2a-b}{c}=\dfrac{2b+c}{a}=\dfrac{-2a-c}{b}=\dfrac {1}{k} , k\neq 0$.
then :
a=(2b+c)k----(1)
b=(-2a-c)k---(2)
c=(2a-b)k----(3)
(2)+(3) :b+c=(-b-c)k , so k=-1
(1)+(2)+(3): a+b+c=bk=-b
(1)+(2) :a+b=2a-2b , so a=3b
freom a+b=4b=2004 , b=501
we get a+b+c=-b=-501
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top