MHB Find all integers, such that ....

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The discussion focuses on finding all integers \( n \) such that the set \( \{1, 2, 3, \ldots, n\} \) can be divided into three disjoint subsets \( A, B, \) and \( C \) with equal sums. Participants share various methods for constructing these subsets, with Albert providing a notable solution for some values of \( n \). There is a call for further exploration to identify sets \( A, B, \) and \( C \) for all possible integers \( n \). The conversation highlights the collaborative effort in solving this mathematical problem. Overall, the thread emphasizes the importance of clear arguments and methods in achieving the solution.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all integers, $n$, such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets, $A$, $B$ and $C$ -whose sums of elements are equal.
 
Mathematics news on Phys.org
lfdahl said:
Find all integers, $n$, such that the set $\{1,2,3,4, ...,n\}$ can be written as the disjoint union of the subsets, $A$, $B$ and $C$ -whose sums of elements are equal.
$S_n=\dfrac {n(n+1)}{2}$ must be a multiple of 3, and $n>4$
if :$n=5,$$S_5=15$ and $\dfrac {15}{3}=5=$ sums of elements
we may set :A={$1,4$},B={$2,3$}, C={$5$} and all its combinations
if :$n=6,$$S_6=21$ and $\dfrac {21}{3}=7=$ sums of elements
we may set :A={$1,6$},B={$3,4$}, C={$2,5$} and all its combinations
from above we get :
case 1: $n=5,8,11,14,---=3p+2 ,p\geq 1$
case 2: $n=6,9,12,15,---=3q+3 ,q\geq 1$
 
Last edited:
Albert said:
$S_n=\dfrac {n(n+1)}{2}$ must be a multiple of 3, and $n>4$
if :$n=5,$$S_5=15$ and $\dfrac {15}{3}=5=$ sums of elements
we may set :{$A=1,4$},{$B=2,3$}, {$C=5$} and all its combinations
if :$n=6,$$S_6=21$ and $\dfrac {21}{3}=7=$ sums of elements
we may set :{$A=1,6$},{$B=3,4$}, {$C=2,5$} and all its combinations
from above we get :
case 1: $n=5,8,11,14,---=3p+2 ,p\geq 1$
case 2: $n=6,9,12,15,---=3q+3 ,q\geq 1$

Good job, Albert!:cool:Thankyou for your solution!
 
Solution provided by Albert is good but can we make the sets A, B, C for the above n. he has provided for some cases but not all.
I here mention how to build A,B,C. this is one method and takes care of solution and not all solutions
Now for the common part

Any six consecutive number say 6p to 6p+5 we can choose $ A = \{6p, 6p+5\} , B = \{6p + 1, 6p+4\} ,C = \{6p+2, 6p+3\}$
1st 9 numbers we can choose $A = \{4,9,2\},B = \{3,5,7\}, C =\{(1,6,8\}$
using above
for the case of n = n is of the form 3p + 2 where p >= 1

p =1 or n= 5 gives $\{4,1\},\{2,3\}, \{5\}$ ( Albert has mentioned)

p =2 or n= 8 gives $\{4,8\},\{1,5,6\}, \{(2,3,7\}$

for p >2 we if p odd we have n = 5 + 6k
we get the groups above( n = 5) and from groups of 6 as mentioned above

if p even we have n = 8 + 6k
we get the groups above( n = 8) and from groups of 6 as mentioned above

for n of the form 3p:

p is even: we can choose the elements from groups of 6 then combine for example to choose from (1..12) choose ((1,6),(2,5),(3,4)) from (1.. 6) and (7,12), (8,11),(9, 10) from (7..12) and combine to get (1,6,7,12),(2,5,8,11),(3,4,9,10)

p is odd: choose from 1st 9 elements and elements from groups of 6 and combine to get the result
 
Last edited:
Hi, kaliprasad and Albert. Thankyou for your participation and clever solutions!

Your discussion on the possible values of $n$ is interesting, and the suggested solution below uses a surprisingly short and clear argument:

To find the possible $n$-values, observe that:$\sum_{x \in A}+\sum_{x \in B}+\sum_{x \in C} = \frac{1}{2}n(n+1)$, which is divisible by $3$.It follows, that $n$ must be congruent to $0,2,3$ or $5$ modulo $6$. Therefore $n \le 4$ can be excluded.So the list of $n$-values begins with: $n \in \left\{5,6,8,9,11, ...\right\}$For $n = 5,6,8,9$ we have the following partitions:\[ n = 5:\: \: \: \: A = \left \{ 1,4 \right \}\: \: \: B = \left \{ 2,3 \right \}\: \: \: C = \left \{ 5 \right \} \\\\ n = 6:\: \: \: \: A = \left \{ 1,6 \right \}\: \: \: B = \left \{2,5 \right \}\: \: \: C = \left \{3,4 \right \} \\\\ n = 8:\: \: \: \: A = \left \{1,2,3,6 \right \}\: \: \: B = \left \{ 5,7 \right \}\: \: \: C = \left \{ 4,8 \right \} \\\\ n = 9:\: \: \: \: A = \left \{ 1,2,3,4,5 \right \}\: \: \: B = \left \{7,8 \right \}\: \: \: C = \left \{ 6,9 \right \} \\\\ \]Now, to proceed with a $n+6$-value (e.g. $11$), we can use the nice procedure, which kaliprasad suggested:Use the partition depicted for $n=5$: Now join $n+1$ and $n+6$ to $A$, $n+2$ and $n+5$ to $B$ - and $n+3$ and $n+4$ to $C$.
 
lfdahl said:
Hi, kaliprasad and Albert. Thankyou for your participation and clever solutions!

Your discussion on the possible values of $n$ is interesting, and the suggested solution below uses a surprisingly short and clear argument:

To find the possible $n$-values, observe that:$\sum_{x \in A}+\sum_{x \in B}+\sum_{x \in C} = \frac{1}{2}n(n+1)$, which is divisible by $3$.It follows, that $n$ must be congruent to $0,2,3$ or $5$ modulo $6$. Therefore $n \le 4$ can be excluded.So the list of $n$-values begins with: $n \in \left\{5,6,8,9,11, ...\right\}$For $n = 5,6,8,9$ we have the following partitions:\[ n = 5:\: \: \: \: A = \left \{ 1,4 \right \}\: \: \: B = \left \{ 2,3 \right \}\: \: \: C = \left \{ 5 \right \} \\\\ n = 6:\: \: \: \: A = \left \{ 1,6 \right \}\: \: \: B = \left \{2,5 \right \}\: \: \: C = \left \{3,4 \right \} \\\\ n = 8:\: \: \: \: A = \left \{1,2,3,6 \right \}\: \: \: B = \left \{ 5,7 \right \}\: \: \: C = \left \{ 4,8 \right \} \\\\ n = 9:\: \: \: \: A = \left \{ 1,2,3,4,5 \right \}\: \: \: B = \left \{7,8 \right \}\: \: \: C = \left \{ 6,9 \right \} \\\\ \]Now, to proceed with a $n+6$-value (e.g. $11$), we can use the nice procedure, which kaliprasad suggested:Use the partition depicted for $n=5$: Now join $n+1$ and $n+6$ to $A$, $n+2$ and $n+5$ to $B$ - and $n+3$ and $n+4$ to $C$.
this is a question of combination
in fact $A,B,\,\,and\,\, C$ are interchangeable
for $n=5,8,11,14, ----=3p+2, p\in N, P\geq 1 $ in one group
and $n=6,9,12,15----=3q+3 ,q\in N, q\geq 1 $ as another category
for each type of n,using method of combinatin to find all possible combinatons of $A,B,$and $C$
as mention above
in this question $A,B,$ and $C$ are not main characters, for we are asked to find all possible values of n
take $n = 8:\: \: \: \: A = \left \{4,8 \right \}\: \: \: B = \left \{ 1,5,6 \right \}\: \: \: C = \left \{ 2,3,7\right \}$
also we may set $A = \left \{5,7 \right \}\: \: \: B = \left \{ 4,8 \right \}\: \: \: C = \left \{ 1,2,3,6\right \}$
so the sets of $A,B,C$ are not unique
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top