Find ##f(x)## in the problem involving integration

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Integration
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached
Relevant Equations
integration
Q. 3(b).

This is a textbook problem; unless i am missing something ...the textbook solution is wrong!

1668594868120.png


solution;

1668594967605.png


Mythoughts;

##f(x)=2\cos 3x-3\sin 3x## ...by using the product rule on ##\dfrac{d}{dx} (e^{2x} \cos 3x)##.
 

Attachments

  • 1668594804708.png
    1668594804708.png
    3.9 KB · Views: 123
Physics news on Phys.org
Your solution seems fine.
 
Please get in the habit of posting full problem statements without expressing them exclusively with pictures.
 
  • Like
Likes topsquark and chwala
nuuskur said:
Please get in the habit of posting full problem statements without expressing them exclusively with pictures.
Noted.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top